Abstract:The well-known generalization problem hinders the application of artificial neural networks in continuous-time prediction tasks with varying latent dynamics. In sharp contrast, biological systems can neatly adapt to evolving environments benefiting from real-time feedback mechanisms. Inspired by the feedback philosophy, we present feedback neural networks, showing that a feedback loop can flexibly correct the learned latent dynamics of neural ordinary differential equations (neural ODEs), leading to a prominent generalization improvement. The feedback neural network is a novel two-DOF neural network, which possesses robust performance in unseen scenarios with no loss of accuracy performance on previous tasks. A linear feedback form is presented to correct the learned latent dynamics firstly, with a convergence guarantee. Then, domain randomization is utilized to learn a nonlinear neural feedback form. Finally, extensive tests including trajectory prediction of a real irregular object and model predictive control of a quadrotor with various uncertainties, are implemented, indicating significant improvements over state-of-the-art model-based and learning-based methods.
Abstract:This paper provides a simulated laboratory for making use of Reinforcement Learning (RL) for chemical discovery. Since RL is fairly data intensive, training agents `on-the-fly' by taking actions in the real world is infeasible and possibly dangerous. Moreover, chemical processing and discovery involves challenges which are not commonly found in RL benchmarks and therefore offer a rich space to work in. We introduce a set of highly customizable and open-source RL environments, ChemGymRL, based on the standard Open AI Gym template. ChemGymRL supports a series of interconnected virtual chemical benches where RL agents can operate and train. The paper introduces and details each of these benches using well-known chemical reactions as illustrative examples, and trains a set of standard RL algorithms in each of these benches. Finally, discussion and comparison of the performances of several standard RL methods are provided in addition to a list of directions for future work as a vision for the further development and usage of ChemGymRL.
Abstract:Existing pedestrian attribute recognition (PAR) algorithms are mainly developed based on a static image. However, the performance is not reliable for images with challenging factors, such as heavy occlusion, motion blur, etc. In this work, we propose to understand human attributes using video frames that can make full use of temporal information. Specifically, we formulate the video-based PAR as a vision-language fusion problem and adopt pre-trained big models CLIP to extract the feature embeddings of given video frames. To better utilize the semantic information, we take the attribute list as another input and transform the attribute words/phrase into the corresponding sentence via split, expand, and prompt. Then, the text encoder of CLIP is utilized for language embedding. The averaged visual tokens and text tokens are concatenated and fed into a fusion Transformer for multi-modal interactive learning. The enhanced tokens will be fed into a classification head for pedestrian attribute prediction. Extensive experiments on a large-scale video-based PAR dataset fully validated the effectiveness of our proposed framework.
Abstract:In this work, we consider the Direction-of-Arrival (DOA) estimation problem in a low-cost architecture where only one antenna as the receiver is aided by a reconfigurable intelligent surface (RIS). We introduce the one-bit RIS as a signal reflector to enhance signal transmission in non-line-of-sight (NLOS) situations and substantially simplify the physical hardware for DOA estimation. We optimize the beamforming scheme called measurement matrix to focus the echo power on the receiver with the coarse localization information of the targets as the prior. A beamforming scheme based on the modified genetic algorithm is proposed to optimize the measurement matrix, guaranteeing restricted isometry property (RIP) and meeting single beamforming requirements. The DOA results are finely estimated by solving an atomic-norm based sparse reconstruction problem. Simulation results show that the proposed method outperforms the existing methods in the DOA estimation performance.
Abstract:In recent years, one of the most popular techniques in the computer vision community has been the deep learning technique. As a data-driven technique, deep model requires enormous amounts of accurately labelled training data, which is often inaccessible in many real-world applications. A data-space solution is Data Augmentation (DA), that can artificially generate new images out of original samples. Image augmentation strategies can vary by dataset, as different data types might require different augmentations to facilitate model training. However, the design of DA policies has been largely decided by the human experts with domain knowledge, which is considered to be highly subjective and error-prone. To mitigate such problem, a novel direction is to automatically learn the image augmentation policies from the given dataset using Automated Data Augmentation (AutoDA) techniques. The goal of AutoDA models is to find the optimal DA policies that can maximize the model performance gains. This survey discusses the underlying reasons of the emergence of AutoDA technology from the perspective of image classification. We identify three key components of a standard AutoDA model: a search space, a search algorithm and an evaluation function. Based on their architecture, we provide a systematic taxonomy of existing image AutoDA approaches. This paper presents the major works in AutoDA field, discussing their pros and cons, and proposing several potential directions for future improvements.
Abstract:The direction of arrival (DOA) estimation problem is addressed in this letter. A reconfigurable intelligent surface (RIS) aided system for the DOA estimation is proposed. Unlike traditional DOA estimation systems, a low-cost system with only one complete functional receiver is given by changing the phases of the reflected signals at the RIS elements to realize the multiple measurements. Moreover, an atomic norm-based method is proposed for the DOA estimation by exploiting the target sparsity in the spatial domain and solved by a semi-definite programming (SDP) method. Furthermore, the RIS elements can be any geometry array for practical consideration, so a transformation matrix is formulated and different from the conventional SDP method. Simulation results show that the proposed method can estimate the DOA more accurately than the existing methods in the non-uniform linear RIS array.