Abstract:The spread of fake news on social media poses significant threats to individuals and society. Text-based and graph-based models have been employed for fake news detection by analysing news content and propagation networks, showing promising results in specific scenarios. However, these data-driven models heavily rely on pre-existing in-distribution data for training, limiting their performance when confronted with fake news from emerging or previously unseen domains, known as out-of-distribution (OOD) data. Tackling OOD fake news is a challenging yet critical task. In this paper, we introduce the Causal Subgraph-oriented Domain Adaptive Fake News Detection (CSDA) model, designed to enhance zero-shot fake news detection by extracting causal substructures from propagation graphs using in-distribution data and generalising this approach to OOD data. The model employs a graph neural network based mask generation process to identify dominant nodes and edges within the propagation graph, using these substructures for fake news detection. Additionally, the performance of CSDA is further improved through contrastive learning in few-shot scenarios, where a limited amount of OOD data is available for training. Extensive experiments on public social media datasets demonstrate that CSDA effectively handles OOD fake news detection, achieving a 7 to 16 percents accuracy improvement over other state-of-the-art models.
Abstract:The popularity of online social networks has enabled rapid dissemination of information. People now can share and consume information much more rapidly than ever before. However, low-quality and/or accidentally/deliberately fake information can also spread rapidly. This can lead to considerable and negative impacts on society. Identifying, labelling and debunking online misinformation as early as possible has become an increasingly urgent problem. Many methods have been proposed to detect fake news including many deep learning and graph-based approaches. In recent years, graph-based methods have yielded strong results, as they can closely model the social context and propagation process of online news. In this paper, we present a systematic review of fake news detection studies based on graph-based and deep learning-based techniques. We classify existing graph-based methods into knowledge-driven methods, propagation-based methods, and heterogeneous social context-based methods, depending on how a graph structure is constructed to model news related information flows. We further discuss the challenges and open problems in graph-based fake news detection and identify future research directions.
Abstract:Autonomous vehicles are suited for continuous area patrolling problems. However, finding an optimal patrolling strategy can be challenging for many reasons. Firstly, patrolling environments are often complex and can include unknown and evolving environmental factors. Secondly, autonomous vehicles can have failures or hardware constraints such as limited battery lives. Importantly, patrolling large areas often requires multiple agents that need to collectively coordinate their actions. In this work, we consider these limitations and propose an approach based on a distributed, model-free deep reinforcement learning based multi-agent patrolling strategy. In this approach, agents make decisions locally based on their own environmental observations and on shared information. In addition, agents are trained to automatically recharge themselves when required to support continuous collective patrolling. A homogeneous multi-agent architecture is proposed, where all patrolling agents have an identical policy. This architecture provides a robust patrolling system that can tolerate agent failures and allow supplementary agents to be added to replace failed agents or to increase the overall patrol performance. This performance is validated through experiments from multiple perspectives, including the overall patrol performance, the efficiency of the battery recharging strategy, the overall robustness of the system, and the agents' ability to adapt to environment dynamics.
Abstract:Audio sound recognition and classification is used for many tasks and applications including human voice recognition, music recognition and audio tagging. In this paper we apply Mel Frequency Cepstral Coefficients (MFCC) in combination with a range of machine learning models to identify (Australian) birds from publicly available audio files of their birdsong. We present approaches used for data processing and augmentation and compare the results of various state of the art machine learning models. We achieve an overall accuracy of 91% for the top-5 birds from the 30 selected as the case study. Applying the models to more challenging and diverse audio files comprising 152 bird species, we achieve an accuracy of 58%
Abstract:In recent years, one of the most popular techniques in the computer vision community has been the deep learning technique. As a data-driven technique, deep model requires enormous amounts of accurately labelled training data, which is often inaccessible in many real-world applications. A data-space solution is Data Augmentation (DA), that can artificially generate new images out of original samples. Image augmentation strategies can vary by dataset, as different data types might require different augmentations to facilitate model training. However, the design of DA policies has been largely decided by the human experts with domain knowledge, which is considered to be highly subjective and error-prone. To mitigate such problem, a novel direction is to automatically learn the image augmentation policies from the given dataset using Automated Data Augmentation (AutoDA) techniques. The goal of AutoDA models is to find the optimal DA policies that can maximize the model performance gains. This survey discusses the underlying reasons of the emergence of AutoDA technology from the perspective of image classification. We identify three key components of a standard AutoDA model: a search space, a search algorithm and an evaluation function. Based on their architecture, we provide a systematic taxonomy of existing image AutoDA approaches. This paper presents the major works in AutoDA field, discussing their pros and cons, and proposing several potential directions for future improvements.