Abstract:Non-rigid point cloud registration is a critical challenge in 3D scene understanding, particularly in surgical navigation. Although existing methods achieve excellent performance when trained on large-scale, high-quality datasets, these datasets are prohibitively expensive to collect and annotate, e.g., organ data in authentic medical scenarios. With insufficient training samples and data noise, existing methods degrade significantly since non-rigid patterns are more flexible and complicated than rigid ones, and the distributions across samples are more distinct, leading to higher difficulty in representation learning with few data. In this work, we aim to deal with this challenging few-shot non-rigid point cloud registration problem. Based on the observation that complex non-rigid transformation patterns can be decomposed into rigid and small non-rigid transformations, we propose a novel and effective framework, UniRiT. UniRiT adopts a two-step registration strategy that first aligns the centroids of the source and target point clouds and then refines the registration with non-rigid transformations, thereby significantly reducing the problem complexity. To validate the performance of UniRiT on real-world datasets, we introduce a new dataset, MedMatch3D, which consists of real human organs and exhibits high variability in sample distribution. We further establish a new challenging benchmark for few-shot non-rigid registration. Extensive empirical results demonstrate that UniRiT achieves state-of-the-art performance on MedMatch3D, improving the existing best approach by 94.22%.
Abstract:Dataset Distillation (DD) seeks to create a condensed dataset that, when used to train a model, enables the model to achieve performance similar to that of a model trained on the entire original dataset. It relieves the model training from processing massive data and thus reduces the computation resources, storage, and time costs. This paper illustrates our solution that ranks 1st in the ECCV-2024 Data Distillation Challenge (track 1). Our solution, Modified Difficulty-Aligned Trajectory Matching (M-DATM), introduces two key modifications to the original state-of-the-art method DATM: (1) the soft labels learned by DATM do not achieve one-to-one correspondence with the counterparts generated by the official evaluation script, so we remove the soft labels technique to alleviate such inconsistency; (2) since the removal of soft labels makes it harder for the synthetic dataset to learn late trajectory information, particularly on Tiny ImageNet, we reduce the matching range, allowing the synthetic data to concentrate more on the easier patterns. In the final evaluation, our M-DATM achieved accuracies of 0.4061 and 0.1831 on the CIFAR-100 and Tiny ImageNet datasets, ranking 1st in the Fixed Images Per Class (IPC) Track.
Abstract:Human sensing, which employs various sensors and advanced deep learning technologies to accurately capture and interpret human body information, has significantly impacted fields like public security and robotics. However, current human sensing primarily depends on modalities such as cameras and LiDAR, each of which has its own strengths and limitations. Furthermore, existing multi-modal fusion solutions are typically designed for fixed modality combinations, requiring extensive retraining when modalities are added or removed for diverse scenarios. In this paper, we propose a modality-invariant foundation model for all modalities, X-Fi, to address this issue. X-Fi enables the independent or combinatory use of sensor modalities without additional training by utilizing a transformer structure to accommodate variable input sizes and incorporating a novel "X-fusion" mechanism to preserve modality-specific features during multimodal integration. This approach not only enhances adaptability but also facilitates the learning of complementary features across modalities. Extensive experiments conducted on the MM-Fi and XRF55 datasets, employing six distinct modalities, demonstrate that X-Fi achieves state-of-the-art performance in human pose estimation (HPE) and human activity recognition (HAR) tasks. The findings indicate that our proposed model can efficiently support a wide range of human sensing applications, ultimately contributing to the evolution of scalable, multimodal sensing technologies.
Abstract:The well-known generalization problem hinders the application of artificial neural networks in continuous-time prediction tasks with varying latent dynamics. In sharp contrast, biological systems can neatly adapt to evolving environments benefiting from real-time feedback mechanisms. Inspired by the feedback philosophy, we present feedback neural networks, showing that a feedback loop can flexibly correct the learned latent dynamics of neural ordinary differential equations (neural ODEs), leading to a prominent generalization improvement. The feedback neural network is a novel two-DOF neural network, which possesses robust performance in unseen scenarios with no loss of accuracy performance on previous tasks. A linear feedback form is presented to correct the learned latent dynamics firstly, with a convergence guarantee. Then, domain randomization is utilized to learn a nonlinear neural feedback form. Finally, extensive tests including trajectory prediction of a real irregular object and model predictive control of a quadrotor with various uncertainties, are implemented, indicating significant improvements over state-of-the-art model-based and learning-based methods.
Abstract:Transformer-based large language models (LLMs) excel in modeling complex language patterns but face significant computational costs during inference, especially with long inputs due to the attention mechanism's memory overhead. We observe that certain attention heads exhibit a distribution where the attention weights concentrate on tokens near the query token, termed as recency aware, which focuses on local and short-range dependencies. Leveraging this insight, we propose RecurFormer, a novel architecture that replaces these attention heads with linear recurrent neural networks (RNNs), specifically the Mamba architecture. This replacement reduces the cache size without evicting tokens, thus maintaining generation quality. RecurFormer retains the ability to model long-range dependencies through the remaining attention heads and allows for reusing pre-trained Transformer-based LLMs weights with continual training. Experiments demonstrate that RecurFormer matches the original model's performance while significantly enhancing inference efficiency. Our approach provides a practical solution to the computational challenges of Transformer-based LLMs inference, making it highly attractive for tasks involving long inputs.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities across textual and visual domains but often generate outputs that violate physical laws, revealing a gap in their understanding of the physical world. Inspired by human cognition, where perception is fundamental to reasoning, we explore augmenting LLMs with enhanced perception abilities using Internet of Things (IoT) sensor data and pertinent knowledge for IoT task reasoning in the physical world. In this work, we systematically study LLMs capability to address real-world IoT tasks by augmenting their perception and knowledge base, and then propose a unified framework, IoT-LLM, to enhance such capability. In IoT-LLM, we customize three steps for LLMs: preprocessing IoT data into formats amenable to LLMs, activating their commonsense knowledge through chain-of-thought prompting and specialized role definitions, and expanding their understanding via IoT-oriented retrieval-augmented generation based on in-context learning. To evaluate the performance, We design a new benchmark with five real-world IoT tasks with different data types and reasoning difficulties and provide the benchmarking results on six open-source and close-source LLMs. Experimental results demonstrate the limitations of existing LLMs with naive textual inputs that cannot perform these tasks effectively. We show that IoT-LLM significantly enhances the performance of IoT tasks reasoning of LLM, such as GPT-4, achieving an average improvement of 65% across various tasks against previous methods. The results also showcase LLMs ability to comprehend IoT data and the physical law behind data by providing a reasoning process. Limitations of our work are claimed to inspire future research in this new era.
Abstract:Point cloud registration aims to provide estimated transformations to align point clouds, which plays a crucial role in pose estimation of various navigation systems, such as surgical guidance systems and autonomous vehicles. Despite the impressive performance of recent models on benchmark datasets, many rely on complex modules like KPConv and Transformers, which impose significant computational and memory demands. These requirements hinder their practical application, particularly in resource-constrained environments such as mobile robotics. In this paper, we propose a novel point cloud registration network that leverages a pure MLP architecture, constructing geometric information offline. This approach eliminates the computational and memory burdens associated with traditional complex feature extractors and significantly reduces inference time and resource consumption. Our method is the first to replace 3D coordinate inputs with offline-constructed geometric encoding, improving generalization and stability, as demonstrated by Maximum Mean Discrepancy (MMD) comparisons. This efficient and accurate geometric representation marks a significant advancement in point cloud analysis, particularly for applications requiring fast and reliability.
Abstract:Recent advancements in 3D reconstruction and neural rendering have enhanced the creation of high-quality digital assets, yet existing methods struggle to generalize across varying object shapes, textures, and occlusions. While Next Best View (NBV) planning and Learning-based approaches offer solutions, they are often limited by predefined criteria and fail to manage occlusions with human-like common sense. To address these problems, we present AIR-Embodied, a novel framework that integrates embodied AI agents with large-scale pretrained multi-modal language models to improve active 3DGS reconstruction. AIR-Embodied utilizes a three-stage process: understanding the current reconstruction state via multi-modal prompts, planning tasks with viewpoint selection and interactive actions, and employing closed-loop reasoning to ensure accurate execution. The agent dynamically refines its actions based on discrepancies between the planned and actual outcomes. Experimental evaluations across virtual and real-world environments demonstrate that AIR-Embodied significantly enhances reconstruction efficiency and quality, providing a robust solution to challenges in active 3D reconstruction.
Abstract:Generating fair and accurate predictions plays a pivotal role in deploying large language models (LLMs) in the real world. However, existing debiasing methods inevitably generate unfair or incorrect predictions as they are designed and evaluated to achieve parity across different social groups but leave aside individual commonsense facts, resulting in modified knowledge that elicits unreasonable or undesired predictions. In this paper, we first establish a new bias mitigation benchmark, BiaScope, which systematically assesses performance by leveraging newly constructed datasets and metrics on knowledge retention and generalization. Then, we propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases. FAST identifies the decisive layer responsible for storing social biases and then calibrates its outputs by integrating a small modular network, considering both bias mitigation and knowledge-preserving demands. Comprehensive experiments demonstrate that FAST surpasses state-of-the-art baselines with superior debiasing performance while not compromising the overall model capability for knowledge retention and downstream predictions. This highlights the potential of fine-grained debiasing strategies to achieve fairness in LLMs. Code will be publicly available.
Abstract:With the advance of deep learning, much progress has been made in building powerful artificial intelligence (AI) systems for automatic Chest X-ray (CXR) analysis. Most existing AI models are trained to be a binary classifier with the aim of distinguishing positive and negative cases. However, a large gap exists between the simple binary setting and complicated real-world medical scenarios. In this work, we reinvestigate the problem of automatic radiology diagnosis. We first observe that there is considerable diversity among cases within the positive class, which means simply classifying them as positive loses many important details. This motivates us to build AI models that can communicate fine-grained knowledge from medical images like human experts. To this end, we first propose a new benchmark on fine granularity learning from medical images. Specifically, we devise a division rule based on medical knowledge to divide positive cases into two subcategories, namely atypical positive and typical positive. Then, we propose a new metric termed AUC$^\text{FG}$ on the two subcategories for evaluation of the ability to separate them apart. With the proposed benchmark, we encourage the community to develop AI diagnosis systems that could better learn fine granularity from medical images. Last, we propose a simple risk modulation approach to this problem by only using coarse labels in training. Empirical results show that despite its simplicity, the proposed method achieves superior performance and thus serves as a strong baseline.