Abstract:The increasing deployment of small drones as tools of conflict and disruption has amplified their threat, highlighting the urgent need for effective anti-drone measures. However, the compact size of most drones presents a significant challenge, as traditional supervised point cloud or image-based object detection methods often fail to identify such small objects effectively. This paper proposes a simple UAV detection method using an unsupervised pipeline. It uses spatial-temporal sequence processing to fuse multiple lidar datasets effectively, tracking and determining the position of UAVs, so as to detect and track UAVs in challenging environments. Our method performs front and rear background segmentation of point clouds through a global-local sequence clusterer and parses point cloud data from both the spatial-temporal density and spatial-temporal voxels of the point cloud. Furthermore, a scoring mechanism for point cloud moving targets is proposed, using time series detection to improve accuracy and efficiency. We used the MMAUD dataset, and our method achieved 4th place in the CVPR 2024 UG2+ Challenge, confirming the effectiveness of our method in practical applications.
Abstract:Compact UAV systems, while advancing delivery and surveillance, pose significant security challenges due to their small size, which hinders detection by traditional methods. This paper presents a cost-effective, unsupervised UAV detection method using spatial-temporal sequence processing to fuse multiple LiDAR scans for accurate UAV tracking in real-world scenarios. Our approach segments point clouds into foreground and background, analyzes spatial-temporal data, and employs a scoring mechanism to enhance detection accuracy. Tested on a public dataset, our solution placed 4th in the CVPR 2024 UG2+ Challenge, demonstrating its practical effectiveness. We plan to open-source all designs, code, and sample data for the research community github.com/lianghanfang/UnLiDAR-UAV-Est.