Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University
Abstract:From Paleolithic cave paintings to Impressionism, human painting has evolved to depict increasingly complex and detailed scenes, conveying more nuanced messages. This paper attempts to emerge this artistic capability by simulating the evolutionary pressures that enhance visual communication efficiency. Specifically, we present a model with a stroke branch and a palette branch that together simulate human-like painting. The palette branch learns a limited colour palette, while the stroke branch parameterises each stroke using B\'ezier curves to render an image, subsequently evaluated by a high-level recognition module. We quantify the efficiency of visual communication by measuring the recognition accuracy achieved with machine vision. The model then optimises the control points and colour choices for each stroke to maximise recognition accuracy with minimal strokes and colours. Experimental results show that our model achieves superior performance in high-level recognition tasks, delivering artistic expression and aesthetic appeal, especially in abstract sketches. Additionally, our approach shows promise as an efficient bit-level image compression technique, outperforming traditional methods.
Abstract:Medical image segmentation demands the aggregation of global and local feature representations, posing a challenge for current methodologies in handling both long-range and short-range feature interactions. Recently, vision mamba (ViM) models have emerged as promising solutions for addressing model complexities by excelling in long-range feature iterations with linear complexity. However, existing ViM approaches overlook the importance of preserving short-range local dependencies by directly flattening spatial tokens and are constrained by fixed scanning patterns that limit the capture of dynamic spatial context information. To address these challenges, we introduce a simple yet effective method named context clustering ViM (CCViM), which incorporates a context clustering module within the existing ViM models to segment image tokens into distinct windows for adaptable local clustering. Our method effectively combines long-range and short-range feature interactions, thereby enhancing spatial contextual representations for medical image segmentation tasks. Extensive experimental evaluations on diverse public datasets, i.e., Kumar, CPM17, ISIC17, ISIC18, and Synapse demonstrate the superior performance of our method compared to current state-of-the-art methods. Our code can be found at https://github.com/zymissy/CCViM.
Abstract:Voice disorders negatively impact the quality of daily life in various ways. However, accurately recognizing the category of pathological features from raw audio remains a considerable challenge due to the limited dataset. A promising method to handle this issue is extracting multi-level pathological information from speech in a comprehensive manner by fusing features in the latent space. In this paper, a novel framework is designed to explore the way of high-quality feature fusion for effective and generalized detection performance. Specifically, the proposed model follows a two-stage training paradigm: (1) ECAPA-TDNN and Wav2vec 2.0 which have shown remarkable effectiveness in various domains are employed to learn the universal pathological information from raw audio; (2) An attentive fusion module is dedicatedly designed to establish the interaction between pathological features projected by EcapTdnn and Wav2vec 2.0 respectively and guide the multi-layer fusion, the entire model is jointly fine-tuned from pre-trained features by the automatic voice pathology detection task. Finally, comprehensive experiments on the FEMH and SVD datasets demonstrate that the proposed framework outperforms the competitive baselines, and achieves the accuracy of 90.51% and 87.68%.
Abstract:Medical anomaly detection (AD) is crucial in pathological identification and localization. Current methods typically rely on uncertainty estimation in deep ensembles to detect anomalies, assuming that ensemble learners should agree on normal samples while exhibiting disagreement on unseen anomalies in the output space. However, these methods may suffer from inadequate disagreement on anomalies or diminished agreement on normal samples. To tackle these issues, we propose D2UE, a Diversified Dual-space Uncertainty Estimation framework for medical anomaly detection. To effectively balance agreement and disagreement for anomaly detection, we propose Redundancy-Aware Repulsion (RAR), which uses a similarity kernel that remains invariant to both isotropic scaling and orthogonal transformations, explicitly promoting diversity in learners' feature space. Moreover, to accentuate anomalous regions, we develop Dual-Space Uncertainty (DSU), which utilizes the ensemble's uncertainty in input and output spaces. In input space, we first calculate gradients of reconstruction error with respect to input images. The gradients are then integrated with reconstruction outputs to estimate uncertainty for inputs, enabling effective anomaly discrimination even when output space disagreement is minimal. We conduct a comprehensive evaluation of five medical benchmarks with different backbones. Experimental results demonstrate the superiority of our method to state-of-the-art methods and the effectiveness of each component in our framework. Our code is available at https://github.com/Rubiscol/D2UE.
Abstract:Nowadays, pre-trained encoders are widely used in medical image segmentation because of their ability to capture complex feature representations. However, the existing models fail to effectively utilize the rich features obtained by the pre-trained encoder, resulting in suboptimal segmentation results. In this work, a novel U-shaped model, called FIF-UNet, is proposed to address the above issue, including three plug-and-play modules. A channel spatial interaction module (CSI) is proposed to obtain informative features by establishing the interaction between encoder stages and corresponding decoder stages. A cascaded conv-SE module (CoSE) is designed to enhance the representation of critical features by adaptively assigning importance weights on different feature channels. A multi-level fusion module (MLF) is proposed to fuse the multi-scale features from the decoder stages, ensuring accurate and robust final segmentation. Comprehensive experiments on the Synapse and ACDC datasets demonstrate that the proposed FIF-UNet outperforms existing state-of-the-art methods, which achieves the highest average DICE of 86.05% and 92.58%, respectively.
Abstract:Pre-trained large vision-language models (VLMs) like CLIP have revolutionized visual representation learning using natural language as supervisions, and demonstrated promising generalization ability. In this work, we propose ViP, a novel visual symptom-guided prompt learning framework for medical image analysis, which facilitates general knowledge transfer from CLIP. ViP consists of two key components: a visual symptom generator (VSG) and a dual-prompt network. Specifically, VSG aims to extract explicable visual symptoms from pre-trained large language models, while the dual-prompt network utilizes these visual symptoms to guide the training on two learnable prompt modules, i.e., context prompt and merge prompt, which effectively adapts our framework to medical image analysis via large VLMs. Extensive experimental results demonstrate that ViP can outperform state-of-the-art methods on two challenging datasets.
Abstract:In this work, we propose a geometry-aware semi-supervised method for fine-grained building function recognition. This method leverages the geometric relationships between multi-source data to improve the accuracy of pseudo labels in semi-supervised learning, extending the task's scope and making it applicable to cross-categorization systems of building function recognition. Firstly, we design an online semi-supervised pre-training stage, which facilitates the precise acquisition of building facade location information in street-view images. In the second stage, we propose a geometry-aware coarse annotation generation module. This module effectively combines GIS data and street-view data based on the geometric relationships, improving the accuracy of pseudo annotations. In the third stage, we combine the newly generated coarse annotations with the existing labeled dataset to achieve fine-grained functional recognition of buildings across multiple cities at a large scale. Extensive experiments demonstrate that our proposed framework exhibits superior performance in fine-grained functional recognition of buildings. Within the same categorization system, it achieves improvements of 7.6% and 4.8% compared to fully-supervised methods and state-of-the-art semi-supervised methods, respectively. Additionally, our method also performs well in cross-city tasks, i.e., extending the model trained on OmniCity (New York) to new areas (i.e., Los Angeles and Boston). This study provides a novel solution for the fine-grained function recognition of large-scale buildings across multiple cities, offering essential data for understanding urban infrastructure planning, human activity patterns, and the interactions between humans and buildings.
Abstract:Imagining potential outcomes of actions before execution helps agents make more informed decisions, a prospective thinking ability fundamental to human cognition. However, mainstream model-free Reinforcement Learning (RL) methods lack the ability to proactively envision future scenarios, plan, and guide strategies. These methods typically rely on trial and error to adjust policy functions, aiming to maximize cumulative rewards or long-term value, even if such high-reward decisions place the environment in extremely dangerous states. To address this, we propose the Prospective (ProSpec) RL method, which makes higher-value, lower-risk optimal decisions by imagining future n-stream trajectories. Specifically, ProSpec employs a dynamic model to predict future states (termed "imagined states") based on the current state and a series of sampled actions. Furthermore, we integrate the concept of Model Predictive Control and introduce a cycle consistency constraint that allows the agent to evaluate and select the optimal actions from these trajectories. Moreover, ProSpec employs cycle consistency to mitigate two fundamental issues in RL: augmenting state reversibility to avoid irreversible events (low risk) and augmenting actions to generate numerous virtual trajectories, thereby improving data efficiency. We validated the effectiveness of our method on the DMControl benchmarks, where our approach achieved significant performance improvements. Code will be open-sourced upon acceptance.
Abstract:Mixture-of-Experts (MoE) architectures have recently gained increasing popularity within the domain of large language models (LLMs) due to their ability to significantly reduce training and inference overhead. However, MoE architectures face challenges, such as significant disparities in the number of tokens assigned to each expert and a tendency toward homogenization among experts, which adversely affects the model's semantic generation capabilities. In this paper, we introduce LocMoE+, a refined version of the low-overhead LocMoE, incorporating the following enhancements: (1) Quantification and definition of the affinity between experts and tokens. (2) Implementation of a global-level adaptive routing strategy to rearrange tokens based on their affinity scores. (3) Reestimation of the lower bound for expert capacity, which has been shown to progressively decrease as the token feature distribution evolves. Experimental results demonstrate that, without compromising model convergence or efficacy, the number of tokens each expert processes can be reduced by over 60%. Combined with communication optimizations, this leads to an average improvement in training efficiency ranging from 5.4% to 46.6%. After fine-tuning, LocMoE+ exhibits a performance improvement of 9.7% to 14.1% across the GDAD, C-Eval, and TeleQnA datasets.
Abstract:Multiple instance learning (MIL) has emerged as a popular method for classifying histopathology whole slide images (WSIs). Existing approaches typically rely on frozen pre-trained models to extract instance features, neglecting the substantial domain shift between pre-training natural and histopathological images. To address this issue, we propose PAMT, a novel Prompt-guided Adaptive Model Transformation framework that enhances MIL classification performance by seamlessly adapting pre-trained models to the specific characteristics of histopathology data. To capture the intricate histopathology distribution, we introduce Representative Patch Sampling (RPS) and Prototypical Visual Prompt (PVP) to reform the input data, building a compact while informative representation. Furthermore, to narrow the domain gap, we introduce Adaptive Model Transformation (AMT) that integrates adapter blocks within the feature extraction pipeline, enabling the pre-trained models to learn domain-specific features. We rigorously evaluate our approach on two publicly available datasets, Camelyon16 and TCGA-NSCLC, showcasing substantial improvements across various MIL models. Our findings affirm the potential of PAMT to set a new benchmark in WSI classification, underscoring the value of a targeted reprogramming approach.