Abstract:Detecting cognitive biases in large language models (LLMs) is a fascinating task that aims to probe the existing cognitive biases within these models. Current methods for detecting cognitive biases in language models generally suffer from incomplete detection capabilities and a restricted range of detectable bias types. To address this issue, we introduced the 'MindScope' dataset, which distinctively integrates static and dynamic elements. The static component comprises 5,170 open-ended questions spanning 72 cognitive bias categories. The dynamic component leverages a rule-based, multi-agent communication framework to facilitate the generation of multi-round dialogues. This framework is flexible and readily adaptable for various psychological experiments involving LLMs. In addition, we introduce a multi-agent detection method applicable to a wide range of detection tasks, which integrates Retrieval-Augmented Generation (RAG), competitive debate, and a reinforcement learning-based decision module. Demonstrating substantial effectiveness, this method has shown to improve detection accuracy by as much as 35.10% compared to GPT-4. Codes and appendix are available at https://github.com/2279072142/MindScope.
Abstract:The goal of feature selection is to choose the optimal subset of features for a recognition task by evaluating the importance of each feature, thereby achieving effective dimensionality reduction. Currently, proposed feature selection methods often overlook the discriminative dependencies between features and labels. To address this problem, this paper introduces a novel orthogonal regression model incorporating the area of a polygon. The model can intuitively capture the discriminative dependencies between features and labels. Additionally, this paper employs a hybrid non-monotone linear search method to efficiently tackle the non-convex optimization challenge posed by orthogonal constraints. Experimental results demonstrate that our approach not only effectively captures discriminative dependency information but also surpasses traditional methods in reducing feature dimensions and enhancing classification performance.
Abstract:EduChat (https://www.educhat.top/) is a large-scale language model (LLM)-based chatbot system in the education domain. Its goal is to support personalized, fair, and compassionate intelligent education, serving teachers, students, and parents. Guided by theories from psychology and education, it further strengthens educational functions such as open question answering, essay assessment, Socratic teaching, and emotional support based on the existing basic LLMs. Particularly, we learn domain-specific knowledge by pre-training on the educational corpus and stimulate various skills with tool use by fine-tuning on designed system prompts and instructions. Currently, EduChat is available online as an open-source project, with its code, data, and model parameters available on platforms (e.g., GitHub https://github.com/icalk-nlp/EduChat, Hugging Face https://huggingface.co/ecnu-icalk ). We also prepare a demonstration of its capabilities online (https://vimeo.com/851004454). This initiative aims to promote research and applications of LLMs for intelligent education.