Tsinghua University
Abstract:3D Large Language Models (LLMs) leveraging spatial information in point clouds for 3D spatial reasoning attract great attention. Despite some promising results, the role of point clouds in 3D spatial reasoning remains under-explored. In this work, we comprehensively evaluate and analyze these models to answer the research question: \textit{Does point cloud truly boost the spatial reasoning capacities of 3D LLMs?} We first evaluate the spatial reasoning capacity of LLMs with different input modalities by replacing the point cloud with the visual and text counterparts. We then propose a novel 3D QA (Question-answering) benchmark, ScanReQA, that comprehensively evaluates models' understanding of binary spatial relationships. Our findings reveal several critical insights: 1) LLMs without point input could even achieve competitive performance even in a zero-shot manner; 2) existing 3D LLMs struggle to comprehend the binary spatial relationships; 3) 3D LLMs exhibit limitations in exploiting the structural coordinates in point clouds for fine-grained spatial reasoning. We think these conclusions can help the next step of 3D LLMs and also offer insights for foundation models in other modalities. We release datasets and reproducible codes in the anonymous project page: https://3d-llm.xyz.
Abstract:Large language models (LLMs) have significantly advanced autonomous software engineering, leading to a growing number of software engineering agents that assist developers in automatic program repair. Issue localization forms the basis for accurate patch generation. However, because of limitations caused by the context window length of LLMs, existing issue localization methods face challenges in balancing concise yet effective contexts and adequately comprehensive search spaces. In this paper, we introduce CoSIL, an LLM driven, simple yet powerful function level issue localization method without training or indexing. CoSIL reduces the search space through module call graphs, iteratively searches the function call graph to obtain relevant contexts, and uses context pruning to control the search direction and manage contexts effectively. Importantly, the call graph is dynamically constructed by the LLM during search, eliminating the need for pre-parsing. Experiment results demonstrate that CoSIL achieves a Top-1 localization success rate of 43 percent and 44.6 percent on SWE bench Lite and SWE bench Verified, respectively, using Qwen2.5 Coder 32B, outperforming existing methods by 8.6 to 98.2 percent. When CoSIL is applied to guide the patch generation stage, the resolved rate further improves by 9.3 to 31.5 percent.
Abstract:This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.
Abstract:Spatial reasoning is a fundamental capability of embodied agents and has garnered widespread attention in the field of multimodal large language models (MLLMs). In this work, we propose a novel benchmark, Open3DVQA, to comprehensively evaluate the spatial reasoning capacities of current state-of-the-art (SOTA) foundation models in open 3D space. Open3DVQA consists of 9k VQA samples, collected using an efficient semi-automated tool in a high-fidelity urban simulator. We evaluate several SOTA MLLMs across various aspects of spatial reasoning, such as relative and absolute spatial relationships, situational reasoning, and object-centric spatial attributes. Our results reveal that: 1) MLLMs perform better at answering questions regarding relative spatial relationships than absolute spatial relationships, 2) MLLMs demonstrate similar spatial reasoning abilities for both egocentric and allocentric perspectives, and 3) Fine-tuning large models significantly improves their performance across different spatial reasoning tasks. We believe that our open-source data collection tools and in-depth analyses will inspire further research on MLLM spatial reasoning capabilities. The benchmark is available at https://github.com/WeichenZh/Open3DVQA.
Abstract:Facial Action Units (AUs) are essential for conveying psychological states and emotional expressions. While automatic AU detection systems leveraging deep learning have progressed, they often overfit to specific datasets and individual features, limiting their cross-domain applicability. To overcome these limitations, we propose a doubly adaptive dropout approach for cross-domain AU detection, which enhances the robustness of convolutional feature maps and spatial tokens against domain shifts. This approach includes a Channel Drop Unit (CD-Unit) and a Token Drop Unit (TD-Unit), which work together to reduce domain-specific noise at both the channel and token levels. The CD-Unit preserves domain-agnostic local patterns in feature maps, while the TD-Unit helps the model identify AU relationships generalizable across domains. An auxiliary domain classifier, integrated at each layer, guides the selective omission of domain-sensitive features. To prevent excessive feature dropout, a progressive training strategy is used, allowing for selective exclusion of sensitive features at any model layer. Our method consistently outperforms existing techniques in cross-domain AU detection, as demonstrated by extensive experimental evaluations. Visualizations of attention maps also highlight clear and meaningful patterns related to both individual and combined AUs, further validating the approach's effectiveness.
Abstract:Despite the impressive performance of current vision-based facial action unit (AU) detection approaches, they are heavily susceptible to the variations across different domains and the cross-domain AU detection methods are under-explored. In response to this challenge, we propose a decoupled doubly contrastive adaptation (D$^2$CA) approach to learn a purified AU representation that is semantically aligned for the source and target domains. Specifically, we decompose latent representations into AU-relevant and AU-irrelevant components, with the objective of exclusively facilitating adaptation within the AU-relevant subspace. To achieve the feature decoupling, D$^2$CA is trained to disentangle AU and domain factors by assessing the quality of synthesized faces in cross-domain scenarios when either AU or domain attributes are modified. To further strengthen feature decoupling, particularly in scenarios with limited AU data diversity, D$^2$CA employs a doubly contrastive learning mechanism comprising image and feature-level contrastive learning to ensure the quality of synthesized faces and mitigate feature ambiguities. This new framework leads to an automatically learned, dedicated separation of AU-relevant and domain-relevant factors, and it enables intuitive, scale-specific control of the cross-domain facial image synthesis. Extensive experiments demonstrate the efficacy of D$^2$CA in successfully decoupling AU and domain factors, yielding visually pleasing cross-domain synthesized facial images. Meanwhile, D$^2$CA consistently outperforms state-of-the-art cross-domain AU detection approaches, achieving an average F1 score improvement of 6\%-14\% across various cross-domain scenarios.
Abstract:User consumption behavior data, which records individuals' online spending history at various types of stores, has been widely used in various applications, such as store recommendation, site selection, and sale forecasting. However, its high worth is limited due to deficiencies in data comprehensiveness and changes of application scenarios. Thus, generating high-quality sequential consumption data by simulating complex user consumption behaviors is of great importance to real-world applications. Two branches of existing sequence generation methods are both limited in quality. Model-based methods with simplified assumptions fail to model the complex decision process of user consumption, while data-driven methods that emulate real-world data are prone to noises, unobserved behaviors, and dynamic decision space. In this work, we propose to enhance the fidelity and trustworthiness of the data-driven Generative Adversarial Imitation Learning (GAIL) method by blending it with the Exploration and Preferential Return EPR model . The core idea of our EPR-GAIL framework is to model user consumption behaviors as a complex EPR decision process, which consists of purchase, exploration, and preference decisions. Specifically, we design the hierarchical policy function in the generator as a realization of the EPR decision process and employ the probability distributions of the EPR model to guide the reward function in the discriminator. Extensive experiments on two real-world datasets of user consumption behaviors on an online platform demonstrate that the EPR-GAIL framework outperforms the best state-of-the-art baseline by over 19\% in terms of data fidelity. Furthermore, the generated consumption behavior data can improve the performance of sale prediction and location recommendation by up to 35.29% and 11.19%, respectively, validating its advantage for practical applications.
Abstract:To uncover the city's fundamental functioning mechanisms, it is important to acquire a deep understanding of complicated relationships among citizens, location, and mobility behaviors. Previous research studies have applied direct correlation analysis to investigate such relationships. Nevertheless, due to the ubiquitous confounding effects, empirical correlation analysis may not accurately reflect underlying causal relationships among basic urban elements. In this paper, we propose a novel urban causal computing framework to comprehensively explore causalities and confounding effects among a variety of factors across different types of urban elements. In particular, we design a reinforcement learning algorithm to discover the potential causal graph, which depicts the causal relations between urban factors. The causal graph further serves as the guidance for estimating causal effects between pair-wise urban factors by propensity score matching. After removing the confounding effects from correlations, we leverage significance levels of causal effects in downstream urban mobility prediction tasks. Experimental studies on open-source urban datasets show that the discovered causal graph demonstrates a hierarchical structure, where citizens affect locations, and they both cause changes in urban mobility behaviors. Experimental results in urban mobility prediction tasks further show that the proposed method can effectively reduce confounding effects and enhance performance of urban computing tasks.
Abstract:Accurate origin-destination (OD) flow prediction is of great importance to developing cities, as it can contribute to optimize urban structures and layouts. However, with the common issues of missing regional features and lacking OD flow data, it is quite daunting to predict OD flow in developing cities. To address this challenge, we propose a novel Causality-Enhanced OD Flow Prediction (CE-OFP), a unified framework that aims to transfer urban knowledge between cities and achieve accuracy improvements in OD flow predictions across data-scarce cities. In specific, we propose a novel reinforcement learning model to discover universal causalities among urban features in data-rich cities and build corresponding causal graphs. Then, we further build Causality-Enhanced Variational Auto-Encoder (CE-VAE) to incorporate causal graphs for effective feature reconstruction in data-scarce cities. Finally, with the reconstructed features, we devise a knowledge distillation method with a graph attention network to migrate the OD prediction model from data-rich cities to data-scare cities. Extensive experiments on two pairs of real-world datasets validate that the proposed CE-OFP remarkably outperforms state-of-the-art baselines, which can reduce the RMSE of OD flow prediction for data-scarce cities by up to 11%.
Abstract:Large multimodal models exhibit remarkable intelligence, yet their embodied cognitive abilities during motion in open-ended urban 3D space remain to be explored. We introduce a benchmark to evaluate whether video-large language models (Video-LLMs) can naturally process continuous first-person visual observations like humans, enabling recall, perception, reasoning, and navigation. We have manually control drones to collect 3D embodied motion video data from real-world cities and simulated environments, resulting in 1.5k video clips. Then we design a pipeline to generate 5.2k multiple-choice questions. Evaluations of 17 widely-used Video-LLMs reveal current limitations in urban embodied cognition. Correlation analysis provides insight into the relationships between different tasks, showing that causal reasoning has a strong correlation with recall, perception, and navigation, while the abilities for counterfactual and associative reasoning exhibit lower correlation with other tasks. We also validate the potential for Sim-to-Real transfer in urban embodiment through fine-tuning.