Abstract:A multiuser uplink transmission framework based on the segmented waveguide-enabled pinching-antenna system (SWAN) is proposed under two operating protocols: segment selection (SS) and segment aggregation (SA). For each protocol, the achievable uplink sum-rate is characterized for both time-division multiple access (TDMA) and non-orthogonal multiple access (NOMA). Low-complexity placement methods for the pinching antennas (PAs) are developed for both protocols and for both multiple-access schemes. Numerical results validate the effectiveness of the proposed methods and show that SWAN achieves higher sum-rate performance than conventional pinching-antenna systems, while SA provides additional performance gains over SS.
Abstract:Pinching-antenna system (PASS) mitigates large-scale path loss by enabling flexible placement of pinching antennas (PAs) along the dielectric waveguide. However, most existing studies assume perfect channel state information (CSI), overlooking the impact of channel uncertainty. This paper addresses this gap by proposing a robust beamforming framework for both lossy and lossless waveguides. For baseband beamforming, the lossy case yields an second-order cone programming-based solution, while the lossless case admits a closed-form solution via maximum ratio transmission. The PAs' positions in both cases are optimized through the Gauss-Seidel-based method. Numerical results validate the effectiveness of the proposed algorithm and demonstrate that PASS exhibits superior robustness against channel uncertainty compared with conventional fixed-antenna systems. Notably, its worst-case achievable rate can even exceed the fixed-antenna baseline under perfect CSI.
Abstract:A segmented waveguide-enabled pinching-antenna system (SWAN)-assisted integrated sensing and communications (ISAC) framework is proposed. Unlike conventional pinching antenna systems (PASS), which use a single long waveguide, SWAN divides the waveguide into multiple short segments, each with a dedicated feed point. Thanks to the segmented structure, SWAN enhances sensing performance by significantly simplifying the reception model and reducing the in-waveguide propagation loss. To balance performance and complexity, three segment controlling protocols are proposed for the transceivers, namely i) \emph{segment selection} to select a single segment for signal transceiving, ii) \emph{segment aggregation} to aggregate signals from all segments using a single RF chain, and iii) \emph{segment multiplexing} to jointly process the signals from all segments using individual RF chains. The theoretical sensing performance limit is first analyzed for different protocols, unveiling how the sensing performance gain of SWAN scales with the number of segments. Based on this performance limit, the Pareto fronts of sensing and communication performance are characterized for the simple one-user one-target case, which is then extended to the general multi-user single-target case based on time-division multiple access (TDMA). Numerical results are presented to verify the correctness of the derivations and the effectiveness of the proposed algorithms, which jointly confirm the advantages of SWAN-assisted ISAC.
Abstract:We study the energy efficiency of pinching-antenna systems (PASSs) by developing a consistent formulation for power distribution in these systems. The per-antenna power distribution in PASSs is not controlled explicitly by a power allocation policy, but rather implicitly through tuning of pinching couplings and locations. Both these factors are tunable: (i) pinching locations are tuned using movable elements, and (ii) couplings can be tuned by varying the effective coupling length of the pinching elements. While the former is feasible to be addressed dynamically in settings with low user mobility, the latter cannot be addressed at a high rate. We thus develop a class of hybrid dynamic-static algorithms, which maximize the energy efficiency by updating the system parameters at different rates. Our experimental results depict that dynamic tuning of pinching locations can significantly boost energy efficiency of PASSs.
Abstract:This article investigates secure multicast communications in pinching-antenna systems (PASS), where pinching beamforming is enabled by adaptively adjusting pinching antenna (PAs) positions along waveguides to improve multicast security. Specifically, a PASS-based secure multicast framework is proposed, in which joint optimization of transmit and pinching beamforming is conducted to maximize the secrecy multicast rate. i) For the single-group multicast scenario, an alternating optimization (AO) framework is employed, where the pinching beamformer is updated via an element-wise sequential optimization method. The transmit beamformer is designed via a semidefinite relaxation (SDR) formulation for an upper-bound solution, while a Dinkelbach-alternating direction method of multipliers (ADMM) offers a low-complexity alternative. ii) For the multi-group multicast scenario, transmit and pinching beamformers are alternately optimized under a majorization-minimization (MM) framework. The transmit beamformer is obtained via SDR or an efficient second-order cone programming (SOCP) method, while the pinching beamformer is updated through MM-based element-wise sequential update strategy. Numerical results are provided to demonstrate that: (i) PASS consistently outperform conventional fixed-location antenna architectures in terms of secrecy performance across various configurations; and (ii) the performance advantage of PASS over fixed-location architectures becomes more significant with increased service region, larger antenna arrays, and higher user and eavesdropper densities.
Abstract:Pinching antenna systems (PASS) present a breakthrough among the flexible-antenna technologies, and distinguish themselves by facilitating large-scale antenna reconfiguration, line-of-sight creation, scalable implementation, and near-field benefits, thus bringing wireless communications from the last mile to the last meter. A comprehensive tutorial is presented in this paper. First, the fundamentals of PASS are discussed, including PASS signal models, hardware models, power radiation models, and pinching antenna activation methods. Building upon this, the information-theoretic capacity limits achieved by PASS are characterized, and several typical performance metrics of PASS-based communications are analyzed to demonstrate its superiority over conventional antenna technologies. Next, the pinching beamforming design is investigated. The corresponding power scaling law is first characterized. For the joint transmit and pinching design in the general multiple-waveguide case, 1) a pair of transmission strategies is proposed for PASS-based single-user communications to validate the superiority of PASS, namely sub-connected and fully connected structures; and 2) three practical protocols are proposed for facilitating PASS-based multi-user communications, namely waveguide switching, waveguide division, and waveguide multiplexing. A possible implementation of PASS in wideband communications is further highlighted. Moreover, the channel state information acquisition in PASS is elaborated with a pair of promising solutions. To overcome the high complexity and suboptimality inherent in conventional convex-optimization-based approaches, machine-learning-based methods for operating PASS are also explored, focusing on selected deep neural network architectures and training algorithms. Finally, several promising applications of PASS in next-generation wireless networks are highlighted.
Abstract:Unlike conventional systems using a fixed-location antenna, the channel capacity of the pinching-antenna system (PASS) is determined by the activated positions of pinching antennas. This article characterizes the capacity region of multiuser PASS, where a single pinched waveguide is deployed to enable both uplink and downlink communications. The capacity region of the uplink channel is first characterized. \romannumeral1) For the single-pinch case, closed-form expressions are derived for the optimal antenna activation position, along with the corresponding capacity region and the achievable data rate regions under time-division multiple access (TDMA) and frequency-division multiple access (FDMA). It is proven that the capacity region of PASS encompasses that of conventional fixed-antenna systems, and that the FDMA rate region contains the TDMA rate region. \romannumeral2) For the multiple-pinch case, inner and outer bounds on the capacity region are derived using an element-wise alternating antenna position optimization technique and the Cauchy-Schwarz inequality, respectively. The achievable FDMA rate region is also derived using the same optimization framework, while the TDMA rate region is obtained through an antenna position refinement approach. The analysis is then extended to the downlink PASS using the uplink-downlink duality framework. It is proven that the relationships among the downlink capacity and rate regions are consistent with those in the uplink case. Numerical results demonstrate that: \romannumeral1) the derived bounds closely approximate the exact capacity region, \romannumeral2) PASS yields a significantly enlarged capacity region compared to conventional fixed-antenna systems, and \romannumeral3) in the multiple-pinch case, TDMA and FDMA are capable of approaching the channel capacity limit.
Abstract:Dynamic metasurface antennas (DMAs) offer the potential to achieve large-scale antenna arrays with low power consumption and reduced hardware costs, making them a promising technology for future communication systems. This paper investigates the spectral efficiency (SE) of DMA-enabled multiuser multiple-input single-output (MISO) systems in both uplink and downlink transmissions, using only statistical channel state information (CSI) to maximize the ergodic sum rate of multiple users. For the uplink system, we consider two decoding rules: minimum mean square error (MMSE) with and without successive interference cancellation (SIC). For both decoders, we derive closed-form surrogates to substitute the original expressions of ergodic sum rate and formulate tractable optimization problems for designing DMA weights. Then, a weighted MMSE (WMMSE)-based algorithm is proposed to maximize the ergodic sum rate. For the downlink system, we derive an approximate expression for the ergodic sum rate and formulate a hybrid analog/digital beamforming optimization problem that jointly optimizes the digital precoder and DMA weights. A penalty dual decomposition (PDD)-based algorithm is proposed by leveraging the fractional programming framework. Numerical results validate the accuracy of the derived surrogates and highlight the superiority of the proposed algorithms over baseline schemes. It is shown that these algorithms are effective across various DMA settings and are particularly well-suited for system design in fast time-varying channels.
Abstract:The pinching-antenna system (PASS) reconstructs wireless channels through pinching beamforming, i.e., optimizing the activated locations of pinching antennas (PAs) along the waveguide. The aim of this article is to investigate the joint design of baseband beamforming and pinching beamforming. A low-complexity element-wise sequential optimization framework is proposed to address the sum-rate maximization problem in PASS-enabled downlink and uplink channels. i) For the downlink scenario, maximum ratio transmission (MRT), zero-forcing (ZF), and minimum mean square error (MMSE) beamforming schemes are employed as baseband beamformers. For each beamformer, a closed-form expression for the downlink sum-rate is derived as a single-variable function with respect to the pinching beamformer. Based on this, a sequential optimization method is proposed, where the positions of the PAs are updated element-wise using a low-complexity one-dimensional search. ii) For the uplink scenario, signal detection is performed using maximum ratio combining (MRC), ZF, and MMSE combiners. A closed-form sum-rate expression is derived for each linear combiner, and a similar element-wise design is applied to optimize the pinching beamforming. Numerical results are provided to validate the effectiveness of the proposed method and demonstrate that: (i) For all considered linear beamformers, the proposed PASS architecture outperforms conventional fixed-antenna systems in terms of sum-rate performance; (ii) in both downlink and uplink channels, ZF achieves performance close to that of MMSE and significantly outperforms MRT or MRC; and (iii) the proposed element-wise design eliminates the need for alternating updates between the baseband and pinching beamformers, thereby ensuring low computational complexity.
Abstract:A wireless sensing architecture via pinching antenna systems is proposed. Compared to conventional wireless systems, PASS offers flexible antenna deployment and improved probing performance for wireless sensing by leveraging dielectric waveguides and pinching antennas (PAs). To enhance signal reception, leaky coaxial (LCX) cables are used to uniformly collect echo signals over a wide area. The Cram\'er-Rao bound (CRB) for multi-target sensing is derived and then minimized through the joint optimization of the transmit waveform and the positions of PAs. To solve the resulting highly coupled, non-convex problem, a two-stage particle swarm optimization (PSO)-based algorithm is proposed. Numerical results demonstrate significant gains in sensing accuracy and robustness over conventional sensing systems, highlighting the benefits of integrating LCX-based reception with optimized PASS configurations.