Abstract:Multimodal large language models (MLLMs) have made rapid progress in recent years, yet continue to struggle with low-level visual perception (LLVP) -- particularly the ability to accurately describe the geometric details of an image. This capability is crucial for applications in areas such as robotics, medical image analysis, and manufacturing. In this paper, we first introduce Geoperception, a benchmark designed to evaluate an MLLM's ability to accurately transcribe 2D geometric information from an image. Using this benchmark, we demonstrate the limitations of leading MLLMs, and then conduct a comprehensive empirical study to explore strategies for improving their performance on geometric tasks. Our findings highlight the benefits of certain model architectures, training techniques, and data strategies, including the use of high-fidelity synthetic data and multi-stage training with a data curriculum. Notably, we find that a data curriculum enables models to learn challenging geometry understanding tasks which they fail to learn from scratch. Leveraging these insights, we develop Euclid, a family of models specifically optimized for strong low-level geometric perception. Although purely trained on synthetic multimodal data, Euclid shows strong generalization ability to novel geometry shapes. For instance, Euclid outperforms the best closed-source model, Gemini-1.5-Pro, by up to 58.56% on certain Geoperception benchmark tasks and 10.65% on average across all tasks.
Abstract:Egocentric human pose estimation (HPE) using wearable sensors is essential for VR/AR applications. Most methods rely solely on either egocentric-view images or sparse Inertial Measurement Unit (IMU) signals, leading to inaccuracies due to self-occlusion in images or the sparseness and drift of inertial sensors. Most importantly, the lack of real-world datasets containing both modalities is a major obstacle to progress in this field. To overcome the barrier, we propose EMHI, a multimodal \textbf{E}gocentric human \textbf{M}otion dataset with \textbf{H}ead-Mounted Display (HMD) and body-worn \textbf{I}MUs, with all data collected under the real VR product suite. Specifically, EMHI provides synchronized stereo images from downward-sloping cameras on the headset and IMU data from body-worn sensors, along with pose annotations in SMPL format. This dataset consists of 885 sequences captured by 58 subjects performing 39 actions, totaling about 28.5 hours of recording. We evaluate the annotations by comparing them with optical marker-based SMPL fitting results. To substantiate the reliability of our dataset, we introduce MEPoser, a new baseline method for multimodal egocentric HPE, which employs a multimodal fusion encoder, temporal feature encoder, and MLP-based regression heads. The experiments on EMHI show that MEPoser outperforms existing single-modal methods and demonstrates the value of our dataset in solving the problem of egocentric HPE. We believe the release of EMHI and the method could advance the research of egocentric HPE and expedite the practical implementation of this technology in VR/AR products.
Abstract:Stance detection classifies stance relations (namely, Favor, Against, or Neither) between comments and targets. Pretrained language models (PLMs) are widely used to mine the stance relation to improve the performance of stance detection through pretrained knowledge. However, PLMs also embed ``bad'' pretrained knowledge concerning stance into the extracted stance relation semantics, resulting in pretrained stance bias. It is not trivial to measure pretrained stance bias due to its weak quantifiability. In this paper, we propose Relative Counterfactual Contrastive Learning (RCCL), in which pretrained stance bias is mitigated as relative stance bias instead of absolute stance bias to overtake the difficulty of measuring bias. Firstly, we present a new structural causal model for characterizing complicated relationships among context, PLMs and stance relations to locate pretrained stance bias. Then, based on masked language model prediction, we present a target-aware relative stance sample generation method for obtaining relative bias. Finally, we use contrastive learning based on counterfactual theory to mitigate pretrained stance bias and preserve context stance relation. Experiments show that the proposed method is superior to stance detection and debiasing baselines.
Abstract:While multi-modal large language models (MLLMs) have shown significant progress on many popular visual reasoning benchmarks, whether they possess abstract visual reasoning abilities remains an open question. Similar to the Sudoku puzzles, abstract visual reasoning (AVR) problems require finding high-level patterns (e.g., repetition constraints) that control the input shapes (e.g., digits) in a specific task configuration (e.g., matrix). However, existing AVR benchmarks only considered a limited set of patterns (addition, conjunction), input shapes (rectangle, square), and task configurations (3 by 3 matrices). To evaluate MLLMs' reasoning abilities comprehensively, we introduce MARVEL, a multidimensional AVR benchmark with 770 puzzles composed of six core knowledge patterns, geometric and abstract shapes, and five different task configurations. To inspect whether the model accuracy is grounded in perception and reasoning, MARVEL complements the general AVR question with perception questions in a hierarchical evaluation framework. We conduct comprehensive experiments on MARVEL with nine representative MLLMs in zero-shot and few-shot settings. Our experiments reveal that all models show near-random performance on the AVR question, with significant performance gaps (40%) compared to humans across all patterns and task configurations. Further analysis of perception questions reveals that MLLMs struggle to comprehend the visual features (near-random performance) and even count the panels in the puzzle ( <45%), hindering their ability for abstract reasoning. We release our entire code and dataset.
Abstract:Multimodal Large Language Models (MLLMs) have recently shown remarkable perceptual capability in answering visual questions, however, little is known about the limits of their perception. In particular, while prior works have provided anecdotal evidence of MLLMs' sensitivity to object size, this phenomenon and its underlying causes have not been explored comprehensively. In this work, we quantitatively study the perception of small visual objects in several state-of-the-art MLLMs and reveal a pervasive limitation in answering questions about small objects in images. Next, we identify four independent factors that can contribute to this limitation -- object quality, size, distractors, and location -- and conduct controlled intervention studies to measure the effect of each factor on MLLMs' perception. In particular, we find that lower object quality and smaller object size can both independently reduce MLLMs' ability to answer visual questions. More surprisingly, we find that the location of the object in the image and the presence of visual distractors can also significantly reduce MLLMs' question answering accuracy. Our study provides a better understanding of the perceptual limitation of MLLMs and contributes new evaluation protocols for analyzing the perception of future MLLMs. To facilitate further investigations, we release our code and data.
Abstract:While large language models (LLMs) are still being adopted to new domains and utilized in novel applications, we are experiencing an influx of the new generation of foundation models, namely multi-modal large language models (MLLMs). These models integrate verbal and visual information, opening new possibilities to demonstrate more complex reasoning abilities at the intersection of the two modalities. However, despite the revolutionizing prospect of MLLMs, our understanding of their reasoning abilities is limited. In this study, we assess the nonverbal abstract reasoning abilities of open-source and closed-source MLLMs using variations of Raven's Progressive Matrices. Our experiments expose the difficulty of solving such problems while showcasing the immense gap between open-source and closed-source models. We also reveal critical shortcomings with individual visual and textual modules, subjecting the models to low-performance ceilings. Finally, to improve MLLMs' performance, we experiment with various methods, such as Chain-of-Thought prompting, resulting in a significant (up to 100%) boost in performance.
Abstract:Passive non-line-of-sight (NLOS) imaging has witnessed rapid development in recent years, due to its ability to image objects that are out of sight. The light transport condition plays an important role in this task since changing the conditions will lead to different imaging models. Existing learning-based NLOS methods usually train independent models for different light transport conditions, which is computationally inefficient and impairs the practicality of the models. In this work, we propose NLOS-LTM, a novel passive NLOS imaging method that effectively handles multiple light transport conditions with a single network. We achieve this by inferring a latent light transport representation from the projection image and using this representation to modulate the network that reconstructs the hidden image from the projection image. We train a light transport encoder together with a vector quantizer to obtain the light transport representation. To further regulate this representation, we jointly learn both the reconstruction network and the reprojection network during training. A set of light transport modulation blocks is used to modulate the two jointly trained networks in a multi-scale way. Extensive experiments on a large-scale passive NLOS dataset demonstrate the superiority of the proposed method. The code is available at https://github.com/JerryOctopus/NLOS-LTM.
Abstract:Large language models (LLMs) can be used as accessible and intelligent chatbots by constructing natural language queries and directly inputting the prompt into the large language model. However, different prompt' constructions often lead to uncertainty in the answers and thus make it hard to utilize the specific knowledge of LLMs (like ChatGPT). To alleviate this, we use an interpretable structure to explain the prompt learning principle in LLMs, which certificates that the effectiveness of language models is determined by position changes of the task's related tokens. Therefore, we propose MTPrompt, a multi-dimensional task prompt learning method consisting based on task-related object, summary, and task description information. By automatically building and searching for appropriate prompts, our proposed MTPrompt achieves the best results on few-shot samples setting and five different datasets. In addition, we demonstrate the effectiveness and stability of our method in different experimental settings and ablation experiments. In interaction with large language models, embedding more task-related information into prompts will make it easier to stimulate knowledge embedded in large language models.
Abstract:Multimodal Large Language Models (LLMs) have recently achieved promising zero-shot accuracy on visual question answering (VQA) -- a fundamental task affecting various downstream applications and domains. Given the great potential for the broad use of these models, it is important to investigate their limitations in dealing with different image and question properties. In this work, we investigate whether multimodal LLMs can perceive small details as well as large details in images. In particular, we show that their zero-shot accuracy in answering visual questions is very sensitive to the size of the visual subject of the question, declining up to $46\%$ with size. Furthermore, we show that this effect is causal by observing that human visual cropping can significantly mitigate their sensitivity to size. Inspired by the usefulness of human cropping, we then propose three automatic visual cropping methods as inference time mechanisms to improve the zero-shot performance of multimodal LLMs. We study their effectiveness on four popular VQA datasets, and a subset of the VQAv2 dataset tailored towards fine visual details. Our findings suggest that multimodal LLMs should be used with caution in detail-sensitive VQA applications, and that visual cropping is a promising direction to improve their zero-shot performance. Our code and data are publicly available.
Abstract:We extend the celebrated sliced inverse regression to address the challenges of decentralized data, prioritizing privacy and communication efficiency. Our approach, federated sliced inverse regression (FSIR), facilitates collaborative estimation of the sufficient dimension reduction subspace among multiple clients, solely sharing local estimates to protect sensitive datasets from exposure. To guard against potential adversary attacks, FSIR further employs diverse perturbation strategies, including a novel multivariate Gaussian mechanism that guarantees differential privacy at a low cost of statistical accuracy. Additionally, FSIR naturally incorporates a collaborative variable screening step, enabling effective handling of high-dimensional client data. Theoretical properties of FSIR are established for both low-dimensional and high-dimensional settings, supported by extensive numerical experiments and real data analysis.