Abstract:Motion-controllable image animation is a fundamental task with a wide range of potential applications. Recent works have made progress in controlling camera or object motion via various motion representations, while they still struggle to support collaborative camera and object motion control with adaptive control granularity. To this end, we introduce 3D-aware motion representation and propose an image animation framework, called Perception-as-Control, to achieve fine-grained collaborative motion control. Specifically, we construct 3D-aware motion representation from a reference image, manipulate it based on interpreted user intentions, and perceive it from different viewpoints. In this way, camera and object motions are transformed into intuitive, consistent visual changes. Then, the proposed framework leverages the perception results as motion control signals, enabling it to support various motion-related video synthesis tasks in a unified and flexible way. Experiments demonstrate the superiority of the proposed framework. For more details and qualitative results, please refer to our project webpage: https://chen-yingjie.github.io/projects/Perception-as-Control.
Abstract:Online task-free continual learning (OTFCL) is a more challenging variant of continual learning which emphasizes the gradual shift of task boundaries and learns in an online mode. Existing methods rely on a memory buffer composed of old samples to prevent forgetting. However,the use of memory buffers not only raises privacy concerns but also hinders the efficient learning of new samples. To address this problem, we propose a novel framework called I2CANSAY that gets rid of the dependence on memory buffers and efficiently learns the knowledge of new data from one-shot samples. Concretely, our framework comprises two main modules. Firstly, the Inter-Class Analogical Augmentation (ICAN) module generates diverse pseudo-features for old classes based on the inter-class analogy of feature distributions for different new classes, serving as a substitute for the memory buffer. Secondly, the Intra-Class Significance Analysis (ISAY) module analyzes the significance of attributes for each class via its distribution standard deviation, and generates the importance vector as a correction bias for the linear classifier, thereby enhancing the capability of learning from new samples. We run our experiments on four popular image classification datasets: CoRe50, CIFAR-10, CIFAR-100, and CUB-200, our approach outperforms the prior state-of-the-art by a large margin.
Abstract:The popularity of LiDAR devices and sensor technology has gradually empowered users from autonomous driving to forest monitoring, and research on 3D LiDAR has made remarkable progress over the years. Unlike 2D images, whose focused area is visible and rich in texture information, understanding the point distribution can help companies and researchers find better ways to develop point-based 3D applications. In this work, we contribute an unreal-based LiDAR simulation tool and a 3D simulation dataset named LiDAR-Forest, which can be used by various studies to evaluate forest reconstruction, tree DBH estimation, and point cloud compression for easy visualization. The simulation is customizable in tree species, LiDAR types and scene generation, with low cost and high efficiency.
Abstract:Facial pose estimation refers to the task of predicting face orientation from a single RGB image. It is an important research topic with a wide range of applications in computer vision. Label distribution learning (LDL) based methods have been recently proposed for facial pose estimation, which achieve promising results. However, there are two major issues in existing LDL methods. First, the expectations of label distributions are biased, leading to a biased pose estimation. Second, fixed distribution parameters are applied for all learning samples, severely limiting the model capability. In this paper, we propose an Anisotropic Spherical Gaussian (ASG)-based LDL approach for facial pose estimation. In particular, our approach adopts the spherical Gaussian distribution on a unit sphere which constantly generates unbiased expectation. Meanwhile, we introduce a new loss function that allows the network to learn the distribution parameter for each learning sample flexibly. Extensive experimental results show that our method sets new state-of-the-art records on AFLW2000 and BIWI datasets.
Abstract:Face clustering is a promising way to scale up face recognition systems using large-scale unlabeled face images. It remains challenging to identify small or sparse face image clusters that we call hard clusters, which is caused by the heterogeneity, \ie, high variations in size and sparsity, of the clusters. Consequently, the conventional way of using a uniform threshold (to identify clusters) often leads to a terrible misclassification for the samples that should belong to hard clusters. We tackle this problem by leveraging the neighborhood information of samples and inferring the cluster memberships (of samples) in a probabilistic way. We introduce two novel modules, Neighborhood-Diffusion-based Density (NDDe) and Transition-Probability-based Distance (TPDi), based on which we can simply apply the standard Density Peak Clustering algorithm with a uniform threshold. Our experiments on multiple benchmarks show that each module contributes to the final performance of our method, and by incorporating them into other advanced face clustering methods, these two modules can boost the performance of these methods to a new state-of-the-art. Code is available at: https://github.com/echoanran/On-Mitigating-Hard-Clusters.
Abstract:Subject-invariant facial action unit (AU) recognition remains challenging for the reason that the data distribution varies among subjects. In this paper, we propose a causal inference framework for subject-invariant facial action unit recognition. To illustrate the causal effect existing in AU recognition task, we formulate the causalities among facial images, subjects, latent AU semantic relations, and estimated AU occurrence probabilities via a structural causal model. By constructing such a causal diagram, we clarify the causal effect among variables and propose a plug-in causal intervention module, CIS, to deconfound the confounder \emph{Subject} in the causal diagram. Extensive experiments conducted on two commonly used AU benchmark datasets, BP4D and DISFA, show the effectiveness of our CIS, and the model with CIS inserted, CISNet, has achieved state-of-the-art performance.
Abstract:Facial action units (AUs) play an indispensable role in human emotion analysis. We observe that although AU-based high-level emotion analysis is urgently needed by real-world applications, frame-level AU results provided by previous works cannot be directly used for such analysis. Moreover, as AUs are dynamic processes, the utilization of global temporal information is important but has been gravely ignored in the literature. To this end, we propose EventFormer for AU event detection, which is the first work directly detecting AU events from a video sequence by viewing AU event detection as a multiple class-specific sets prediction problem. Extensive experiments conducted on a commonly used AU benchmark dataset, BP4D, show the superiority of EventFormer under suitable metrics.
Abstract:Multi-object tracking and segmentation (MOTS) is a critical task for autonomous driving applications. The existing MOTS studies face two critical challenges: 1) the published datasets inadequately capture the real-world complexity for network training to address various driving settings; 2) the working pipeline annotation tool is under-studied in the literature to improve the quality of MOTS learning examples. In this work, we introduce the DG-Labeler and DGL-MOTS dataset to facilitate the training data annotation for the MOTS task and accordingly improve network training accuracy and efficiency. DG-Labeler uses the novel Depth-Granularity Module to depict the instance spatial relations and produce fine-grained instance masks. Annotated by DG-Labeler, our DGL-MOTS dataset exceeds the prior effort (i.e., KITTI MOTS and BDD100K) in data diversity, annotation quality, and temporal representations. Results on extensive cross-dataset evaluations indicate significant performance improvements for several state-of-the-art methods trained on our DGL-MOTS dataset. We believe our DGL-MOTS Dataset and DG-Labeler hold the valuable potential to boost the visual perception of future transportation.
Abstract:Finding a suitable density function is essential for density-based clustering algorithms such as DBSCAN and DPC. A naive density corresponding to the indicator function of a unit $d$-dimensional Euclidean ball is commonly used in these algorithms. Such density suffers from capturing local features in complex datasets. To tackle this issue, we propose a new kernel diffusion density function, which is adaptive to data of varying local distributional characteristics and smoothness. Furthermore, we develop a surrogate that can be efficiently computed in linear time and space and prove that it is asymptotically equivalent to the kernel diffusion density function. Extensive empirical experiments on benchmark and large-scale face image datasets show that the proposed approach not only achieves a significant improvement over classic density-based clustering algorithms but also outperforms the state-of-the-art face clustering methods by a large margin.
Abstract:The Internet of Things (IoT) is reshaping modern society by allowing a decent number of RF devices to connect and share information through RF channels. However, such an open nature also brings obstacles to surveillance. For alleviation, a surveillance oracle, or a cognitive communication entity needs to identify and confirm the appearance of known or unknown signal sources in real-time. In this paper, we provide a deep learning framework for RF signal surveillance. Specifically, we jointly integrate the Deep Neural Networks (DNNs) and Quickest Detection (QD) to form a sequential signal surveillance scheme. We first analyze the latent space characteristic of neural network classification models, and then we leverage the response characteristics of DNN classifiers and propose a novel method to transform existing DNN classifiers into performance-assured binary abnormality detectors. In this way, we seamlessly integrate the DNNs with the parametric quickest detection. Finally, we propose an enhanced Elastic Weight Consolidation (EWC) algorithm with better numerical stability for DNNs in signal surveillance systems to evolve incrementally, we demonstrate that the zero-bias DNN is superior to regular DNN models considering incremental learning and decision fairness. We evaluated the proposed framework using real signal datasets and we believe this framework is helpful in developing a trustworthy IoT ecosystem.