Abstract:In this paper, we propose MCUBERT to enable language models like BERT on tiny microcontroller units (MCUs) through network and scheduling co-optimization. We observe the embedding table contributes to the major storage bottleneck for tiny BERT models. Hence, at the network level, we propose an MCU-aware two-stage neural architecture search algorithm based on clustered low-rank approximation for embedding compression. To reduce the inference memory requirements, we further propose a novel fine-grained MCU-friendly scheduling strategy. Through careful computation tiling and re-ordering as well as kernel design, we drastically increase the input sequence lengths supported on MCUs without any latency or accuracy penalty. MCUBERT reduces the parameter size of BERT-tiny and BERT-mini by 5.7$\times$ and 3.0$\times$ and the execution memory by 3.5$\times$ and 4.3$\times$, respectively. MCUBERT also achieves 1.5$\times$ latency reduction. For the first time, MCUBERT enables lightweight BERT models on commodity MCUs and processing more than 512 tokens with less than 256KB of memory.
Abstract:Memory-based video object segmentation methods model multiple objects over long temporal-spatial spans by establishing memory bank, which achieve the remarkable performance. However, they struggle to overcome the false matching and are prone to lose critical information, resulting in confusion among different objects. In this paper, we propose an effective approach which jointly improving the matching and decoding stages to alleviate the false matching issue.For the memory matching stage, we present a cost aware mechanism that suppresses the slight errors for short-term memory and a shunted cross-scale matching for long-term memory which establish a wide filed matching spaces for various object scales. For the readout decoding stage, we implement a compensatory mechanism aims at recovering the essential information where missing at the matching stage. Our approach achieves the outstanding performance in several popular benchmarks (i.e., DAVIS 2016&2017 Val (92.4%&88.1%), and DAVIS 2017 Test (83.9%)), and achieves 84.8%&84.6% on YouTubeVOS 2018&2019 Val.
Abstract:Current unsupervised anomaly detection approaches perform well on public datasets but struggle with specific anomaly types due to the domain gap between pre-trained feature extractors and target-specific domains. To tackle this issue, this paper presents a two-stage training strategy, called \textbf{ToCoAD}. In the first stage, a discriminative network is trained by using synthetic anomalies in a self-supervised learning manner. This network is then utilized in the second stage to provide a negative feature guide, aiding in the training of the feature extractor through bootstrap contrastive learning. This approach enables the model to progressively learn the distribution of anomalies specific to industrial datasets, effectively enhancing its generalizability to various types of anomalies. Extensive experiments are conducted to demonstrate the effectiveness of our proposed two-stage training strategy, and our model produces competitive performance, achieving pixel-level AUROC scores of 98.21\%, 98.43\% and 97.70\% on MVTec AD, VisA and BTAD respectively.
Abstract:Recently, Transformers have been introduced into the field of acoustics recognition. They are pre-trained on large-scale datasets using methods such as supervised learning and semi-supervised learning, demonstrating robust generality--It fine-tunes easily to downstream tasks and shows more robust performance. However, the predominant fine-tuning method currently used is still full fine-tuning, which involves updating all parameters during training. This not only incurs significant memory usage and time costs but also compromises the model's generality. Other fine-tuning methods either struggle to address this issue or fail to achieve matching performance. Therefore, we conducted a comprehensive analysis of existing fine-tuning methods and proposed an efficient fine-tuning approach based on Adapter tuning, namely AAT. The core idea is to freeze the audio Transformer model and insert extra learnable Adapters, efficiently acquiring downstream task knowledge without compromising the model's original generality. Extensive experiments have shown that our method achieves performance comparable to or even superior to full fine-tuning while optimizing only 7.118% of the parameters. It also demonstrates superiority over other fine-tuning methods.
Abstract:Time-resolved illumination provides rich spatio-temporal information for applications such as accurate depth sensing or hidden geometry reconstruction, becoming a useful asset for prototyping and as input for data-driven approaches. However, time-resolved illumination measurements are high-dimensional and have a low signal-to-noise ratio, hampering their applicability in real scenarios. We propose a novel method to compactly represent time-resolved illumination using mixtures of exponentially-modified Gaussians that are robust to noise and preserve structural information. Our method yields representations two orders of magnitude smaller than discretized data, providing consistent results in applications such as hidden scene reconstruction and depth estimation, and quantitative improvements over previous approaches.
Abstract:Memory-aware network scheduling is becoming increasingly important for deep neural network (DNN) inference on resource-constrained devices. However, due to the complex cell-level and network-level topologies, memory-aware scheduling becomes very challenging. While previous algorithms all suffer from poor scalability, in this paper, we propose an efficient memory-aware scheduling framework based on iterative computation graph optimization. Our framework features an iterative graph fusion algorithm that simplifies the computation graph while preserving the scheduling optimality. We further propose an integer linear programming formulation together with topology-aware variable pruning to schedule the simplified graph efficiently. We evaluate our method against prior-art algorithms on different networks and demonstrate that our method outperforms existing techniques in all the benchmarks, reducing the peak memory footprint by 13.4%, and achieving better scalability for networks with complex network-level topologies.
Abstract:Face clustering is a promising way to scale up face recognition systems using large-scale unlabeled face images. It remains challenging to identify small or sparse face image clusters that we call hard clusters, which is caused by the heterogeneity, \ie, high variations in size and sparsity, of the clusters. Consequently, the conventional way of using a uniform threshold (to identify clusters) often leads to a terrible misclassification for the samples that should belong to hard clusters. We tackle this problem by leveraging the neighborhood information of samples and inferring the cluster memberships (of samples) in a probabilistic way. We introduce two novel modules, Neighborhood-Diffusion-based Density (NDDe) and Transition-Probability-based Distance (TPDi), based on which we can simply apply the standard Density Peak Clustering algorithm with a uniform threshold. Our experiments on multiple benchmarks show that each module contributes to the final performance of our method, and by incorporating them into other advanced face clustering methods, these two modules can boost the performance of these methods to a new state-of-the-art. Code is available at: https://github.com/echoanran/On-Mitigating-Hard-Clusters.
Abstract:Subject-invariant facial action unit (AU) recognition remains challenging for the reason that the data distribution varies among subjects. In this paper, we propose a causal inference framework for subject-invariant facial action unit recognition. To illustrate the causal effect existing in AU recognition task, we formulate the causalities among facial images, subjects, latent AU semantic relations, and estimated AU occurrence probabilities via a structural causal model. By constructing such a causal diagram, we clarify the causal effect among variables and propose a plug-in causal intervention module, CIS, to deconfound the confounder \emph{Subject} in the causal diagram. Extensive experiments conducted on two commonly used AU benchmark datasets, BP4D and DISFA, show the effectiveness of our CIS, and the model with CIS inserted, CISNet, has achieved state-of-the-art performance.
Abstract:Facial action units (AUs) play an indispensable role in human emotion analysis. We observe that although AU-based high-level emotion analysis is urgently needed by real-world applications, frame-level AU results provided by previous works cannot be directly used for such analysis. Moreover, as AUs are dynamic processes, the utilization of global temporal information is important but has been gravely ignored in the literature. To this end, we propose EventFormer for AU event detection, which is the first work directly detecting AU events from a video sequence by viewing AU event detection as a multiple class-specific sets prediction problem. Extensive experiments conducted on a commonly used AU benchmark dataset, BP4D, show the superiority of EventFormer under suitable metrics.
Abstract:This paper presents a reinforcement learning (RL) framework that leverages Frank-Wolfe policy optimization to address frame-level bit allocation for HEVC/H.265. Most previous RL-based approaches adopt the single-critic design, which weights the rewards for distortion minimization and rate regularization by an empirically chosen hyper-parameter. More recently, the dual-critic design is proposed to update the actor network by alternating the rate and distortion critics. However, the convergence of training is not guaranteed. To address this issue, we introduce Neural Frank-Wolfe Policy Optimization (NFWPO) in formulating the frame-level bit allocation as an action-constrained RL problem. In this new framework, the rate critic serves to specify a feasible action set, and the distortion critic updates the actor network towards maximizing the reconstruction quality while conforming to the action constraint. Experimental results show that when trained to optimize the video multi-method assessment fusion (VMAF) metric, our NFWPO-based model outperforms both the single-critic and the dual-critic methods. It also demonstrates comparable rate-distortion performance to the 2-pass average bit rate control of x265.