Abstract:For anomaly detection (AD), early approaches often train separate models for individual classes, yielding high performance but posing challenges in scalability and resource management. Recent efforts have shifted toward training a single model capable of handling multiple classes. However, directly extending early AD methods to multi-class settings often results in degraded performance. In this paper, we analyze this degradation observed in reconstruction-based methods, identifying two key issues: catastrophic forgetting and inter-class confusion. To this end, we propose a plug-and-play modification by incorporating class-aware contrastive learning (CL). By explicitly leveraging raw object category information (e.g., carpet or wood) as supervised signals, we apply local CL to fine-tune multiscale features and global CL to learn more compact feature representations of normal patterns, thereby effectively adapting the models to multi-class settings. Experiments across four datasets (over 60 categories) verify the effectiveness of our approach, yielding significant improvements and superior performance compared to advanced methods. Notably, ablation studies show that even using pseudo-class labels can achieve comparable performance.
Abstract:We present MANTA, a visual-text anomaly detection dataset for tiny objects. The visual component comprises over 137.3K images across 38 object categories spanning five typical domains, of which 8.6K images are labeled as anomalous with pixel-level annotations. Each image is captured from five distinct viewpoints to ensure comprehensive object coverage. The text component consists of two subsets: Declarative Knowledge, including 875 words that describe common anomalies across various domains and specific categories, with detailed explanations for < what, why, how>, including causes and visual characteristics; and Constructivist Learning, providing 2K multiple-choice questions with varying levels of difficulty, each paired with images and corresponded answer explanations. We also propose a baseline for visual-text tasks and conduct extensive benchmarking experiments to evaluate advanced methods across different settings, highlighting the challenges and efficacy of our dataset.
Abstract:Spatial transcriptomics (ST) has emerged as an advanced technology that provides spatial context to gene expression. Recently, deep learning-based methods have shown the capability to predict gene expression from WSI data using ST data. Existing approaches typically extract features from images and the neighboring regions using pretrained models, and then develop methods to fuse this information to generate the final output. However, these methods often fail to account for the cellular structure similarity, cellular density and the interactions within the microenvironment. In this paper, we propose a framework named BG-TRIPLEX, which leverages boundary information extracted from pathological images as guiding features to enhance gene expression prediction from WSIs. Specifically, our model consists of three branches: the spot, in-context and global branches. In the spot and in-context branches, boundary information, including edge and nuclei characteristics, is extracted using pretrained models. These boundary features guide the learning of cellular morphology and the characteristics of microenvironment through Multi-Head Cross-Attention. Finally, these features are integrated with global features to predict the final output. Extensive experiments were conducted on three public ST datasets. The results demonstrate that our BG-TRIPLEX consistently outperforms existing methods in terms of Pearson Correlation Coefficient (PCC). This method highlights the crucial role of boundary features in understanding the complex interactions between WSI and gene expression, offering a promising direction for future research.
Abstract:Making use of off-the-shelf resources of resource-rich languages to transfer knowledge for low-resource languages raises much attention recently. The requirements of enabling the model to reach the reliable performance lack well guided, such as the scale of required annotated data or the effective framework. To investigate the first question, we empirically investigate the cost-effectiveness of several methods to train the intent classification and slot-filling models for Indonesia (ID) from scratch by utilizing the English data. Confronting the second challenge, we propose a Bi-Confidence-Frequency Cross-Lingual transfer framework (BiCF), composed by ``BiCF Mixing'', ``Latent Space Refinement'' and ``Joint Decoder'', respectively, to tackle the obstacle of lacking low-resource language dialogue data. Extensive experiments demonstrate our framework performs reliably and cost-efficiently on different scales of manually annotated Indonesian data. We release a large-scale fine-labeled dialogue dataset (ID-WOZ) and ID-BERT of Indonesian for further research.
Abstract:Recent methods using diffusion models have made significant progress in human image generation with various additional controls such as pose priors. However, existing approaches still struggle to generate high-quality images with consistent pose alignment, resulting in unsatisfactory outputs. In this paper, we propose a framework delving into the graph relations of pose priors to provide control information for human image generation. The main idea is to establish a graph topological structure between the pose priors and latent representation of diffusion models to capture the intrinsic associations between different pose parts. A Progressive Graph Integrator (PGI) is designed to learn the spatial relationships of the pose priors with the graph structure, adopting a hierarchical strategy within an Adapter to gradually propagate information across different pose parts. A pose perception loss is further introduced based on a pretrained pose estimation network to minimize the pose differences. Extensive qualitative and quantitative experiments conducted on the Human-Art and LAION-Human datasets demonstrate that our model achieves superior performance, with a 9.98% increase in pose average precision compared to the latest benchmark model. The code is released on *******.
Abstract:The objective of face animation is to generate dynamic and expressive talking head videos from a single reference face, utilizing driving conditions derived from either video or audio inputs. Current approaches often require fine-tuning for specific identities and frequently fail to produce expressive videos due to the limited effectiveness of Wav2Pose modules. To facilitate the generation of one-shot and more consecutive talking head videos, we refine an existing Image2Video model by integrating a Face Locator and Motion Frame mechanism. We subsequently optimize the model using extensive human face video datasets, significantly enhancing its ability to produce high-quality and expressive talking head videos. Additionally, we develop a demo platform using the Gradio framework, which streamlines the process, enabling users to quickly create customized talking head videos.
Abstract:Understanding of video creativity and content often varies among individuals, with differences in focal points and cognitive levels across different ages, experiences, and genders. There is currently a lack of research in this area, and most existing benchmarks suffer from several drawbacks: 1) a limited number of modalities and answers with restrictive length; 2) the content and scenarios within the videos are excessively monotonous, transmitting allegories and emotions that are overly simplistic. To bridge the gap to real-world applications, we introduce a large-scale \textbf{S}ubjective \textbf{R}esponse \textbf{I}ndicators for \textbf{A}dvertisement \textbf{V}ideos dataset, namely SRI-ADV. Specifically, we collected real changes in Electroencephalographic (EEG) and eye-tracking regions from different demographics while they viewed identical video content. Utilizing this multi-modal dataset, we developed tasks and protocols to analyze and evaluate the extent of cognitive understanding of video content among different users. Along with the dataset, we designed a \textbf{H}ypergraph \textbf{M}ulti-modal \textbf{L}arge \textbf{L}anguage \textbf{M}odel (HMLLM) to explore the associations among different demographics, video elements, EEG and eye-tracking indicators. HMLLM could bridge semantic gaps across rich modalities and integrate information beyond different modalities to perform logical reasoning. Extensive experimental evaluations on SRI-ADV and other additional video-based generative performance benchmarks demonstrate the effectiveness of our method. The codes and dataset will be released at \url{https://github.com/suay1113/HMLLM}.
Abstract:Despite significant strides in the field of 3D scene editing, current methods encounter substantial challenge, particularly in preserving 3D consistency in multi-view editing process. To tackle this challenge, we propose a progressive 3D editing strategy that ensures multi-view consistency via a Trajectory-Anchored Scheme (TAS) with a dual-branch editing mechanism. Specifically, TAS facilitates a tightly coupled iterative process between 2D view editing and 3D updating, preventing error accumulation yielded from text-to-image process. Additionally, we explore the relationship between optimization-based methods and reconstruction-based methods, offering a unified perspective for selecting superior design choice, supporting the rationale behind the designed TAS. We further present a tuning-free View-Consistent Attention Control (VCAC) module that leverages cross-view semantic and geometric reference from the source branch to yield aligned views from the target branch during the editing of 2D views. To validate the effectiveness of our method, we analyze 2D examples to demonstrate the improved consistency with the VCAC module. Further extensive quantitative and qualitative results in text-guided 3D scene editing indicate that our method achieves superior editing quality compared to state-of-the-art methods. We will make the complete codebase publicly available following the conclusion of the double-blind review process.
Abstract:Current unsupervised anomaly detection approaches perform well on public datasets but struggle with specific anomaly types due to the domain gap between pre-trained feature extractors and target-specific domains. To tackle this issue, this paper presents a two-stage training strategy, called \textbf{ToCoAD}. In the first stage, a discriminative network is trained by using synthetic anomalies in a self-supervised learning manner. This network is then utilized in the second stage to provide a negative feature guide, aiding in the training of the feature extractor through bootstrap contrastive learning. This approach enables the model to progressively learn the distribution of anomalies specific to industrial datasets, effectively enhancing its generalizability to various types of anomalies. Extensive experiments are conducted to demonstrate the effectiveness of our proposed two-stage training strategy, and our model produces competitive performance, achieving pixel-level AUROC scores of 98.21\%, 98.43\% and 97.70\% on MVTec AD, VisA and BTAD respectively.
Abstract:The goal of image-based virtual try-on is to generate an image of the target person naturally wearing the given clothing. However, most existing methods solely focus on the frontal try-on using the frontal clothing. When the views of the clothing and person are significantly inconsistent, particularly when the person's view is non-frontal, the results are unsatisfactory. To address this challenge, we introduce Multi-View Virtual Try-ON (MV-VTON), which aims to reconstruct the dressing results of a person from multiple views using the given clothes. On the one hand, given that single-view clothes provide insufficient information for MV-VTON, we instead employ two images, i.e., the frontal and back views of the clothing, to encompass the complete view as much as possible. On the other hand, the diffusion models that have demonstrated superior abilities are adopted to perform our MV-VTON. In particular, we propose a view-adaptive selection method where hard-selection and soft-selection are applied to the global and local clothing feature extraction, respectively. This ensures that the clothing features are roughly fit to the person's view. Subsequently, we suggest a joint attention block to align and fuse clothing features with person features. Additionally, we collect a MV-VTON dataset, i.e., Multi-View Garment (MVG), in which each person has multiple photos with diverse views and poses. Experiments show that the proposed method not only achieves state-of-the-art results on MV-VTON task using our MVG dataset, but also has superiority on frontal-view virtual try-on task using VITON-HD and DressCode datasets. Codes and datasets will be publicly released at https://github.com/hywang2002/MV-VTON .