Abstract:Dense retrieval in most industries employs dual-tower architectures to retrieve query-relevant documents. Due to online deployment requirements, existing real-world dense retrieval systems mainly enhance performance by designing negative sampling strategies, overlooking the advantages of scaling up. Recently, Large Language Models (LLMs) have exhibited superior performance that can be leveraged for scaling up dense retrieval. However, scaling up retrieval models significantly increases online query latency. To address this challenge, we propose ScalingNote, a two-stage method to exploit the scaling potential of LLMs for retrieval while maintaining online query latency. The first stage is training dual towers, both initialized from the same LLM, to unlock the potential of LLMs for dense retrieval. Then, we distill only the query tower using mean squared error loss and cosine similarity to reduce online costs. Through theoretical analysis and comprehensive offline and online experiments, we show the effectiveness and efficiency of ScalingNote. Our two-stage scaling method outperforms end-to-end models and verifies the scaling law of dense retrieval with LLMs in industrial scenarios, enabling cost-effective scaling of dense retrieval systems. Our online method incorporating ScalingNote significantly enhances the relevance between retrieved documents and queries.
Abstract:In the ride-hailing industry, subsidies are predominantly employed to incentivize consumers to place more orders, thereby fostering market growth. Causal inference techniques are employed to estimate the consumer elasticity with different subsidy levels. However, the presence of confounding effects poses challenges in achieving an unbiased estimate of the uplift effect. We introduce a consumer subsidizing system to capture relationships between subsidy propensity and the treatment effect, which proves effective while maintaining a lightweight online environment.
Abstract:Spatio-Temporal (ST) prediction is crucial for making informed decisions in urban location-based applications like ride-sharing. However, existing ST models often require region partition as a prerequisite, resulting in two main pitfalls. Firstly, location-based services necessitate ad-hoc regions for various purposes, requiring multiple ST models with varying scales and zones, which can be costly to support. Secondly, different ST models may produce conflicting outputs, resulting in confusing predictions. In this paper, we propose One4All-ST, a framework that can conduct ST prediction for arbitrary modifiable areal units using only one model. To reduce the cost of getting multi-scale predictions, we design an ST network with hierarchical spatial modeling and scale normalization modules to efficiently and equally learn multi-scale representations. To address prediction inconsistencies across scales, we propose a dynamic programming scheme to solve the formulated optimal combination problem, minimizing predicted error through theoretical analysis. Besides, we suggest using an extended quad-tree to index the optimal combinations for quick response to arbitrary modifiable areal units in practical online scenarios. Extensive experiments on two real-world datasets verify the efficiency and effectiveness of One4All-ST in ST prediction for arbitrary modifiable areal units. The source codes and data of this work are available at https://github.com/uctb/One4All-ST.
Abstract:MAUP (modifiable areal unit problem) is a fundamental problem for spatial data management and analysis. As an instantiation of MAUP in online transportation platforms, region generation (i.e., specifying the areal unit for service operations) is the first and vital step for supporting spatiotemporal transportation services such as ride-sharing and freight transport. Most existing region generation methods are manually specified (e.g., fixed-size grids), suffering from poor spatial semantic meaning and inflexibility to meet service operation requirements. In this paper, we propose RegionGen, a data-driven region generation framework that can specify regions with key characteristics (e.g., good spatial semantic meaning and predictability) by modeling region generation as a multi-objective optimization problem. First, to obtain good spatial semantic meaning, RegionGen segments the whole city into atomic spatial elements based on road networks and obstacles (e.g., rivers). Then, it clusters the atomic spatial elements into regions by maximizing various operation characteristics, which is formulated as a multi-objective optimization problem. For this optimization problem, we propose a multi-objective co-optimization algorithm. Extensive experiments verify that RegionGen can generate more suitable regions than traditional methods for spatiotemporal service management.
Abstract:In the Chinese medical insurance industry, the assessor's role is essential and requires significant efforts to converse with the claimant. This is a highly professional job that involves many parts, such as identifying personal information, collecting related evidence, and making a final insurance report. Due to the coronavirus (COVID-19) pandemic, the previous offline insurance assessment has to be conducted online. However, for the junior assessor often lacking practical experience, it is not easy to quickly handle such a complex online procedure, yet this is important as the insurance company needs to decide how much compensation the claimant should receive based on the assessor's feedback. In order to promote assessors' work efficiency and speed up the overall procedure, in this paper, we propose a dialogue-based information extraction system that integrates advanced NLP technologies for medical insurance assessment. With the assistance of our system, the average time cost of the procedure is reduced from 55 minutes to 35 minutes, and the total human resources cost is saved 30% compared with the previous offline procedure. Until now, the system has already served thousands of online claim cases.
Abstract:With the explosive growth of e-commerce and the booming of e-payment, detecting online transaction fraud in real time has become increasingly important to Fintech business. To tackle this problem, we introduce the TitAnt, a transaction fraud detection system deployed in Ant Financial, one of the largest Fintech companies in the world. The system is able to predict online real-time transaction fraud in mere milliseconds. We present the problem definition, feature extraction, detection methods, implementation and deployment of the system, as well as empirical effectiveness. Extensive experiments have been conducted on large real-world transaction data to show the effectiveness and the efficiency of the proposed system.