Victor
Abstract:The Earth's weather system encompasses intricate weather data modalities and diverse weather understanding tasks, which hold significant value to human life. Existing data-driven models focus on single weather understanding tasks (e.g., weather forecasting). Although these models have achieved promising results, they fail to tackle various complex tasks within a single and unified model. Moreover, the paradigm that relies on limited real observations for a single scenario hinders the model's performance upper bound. In response to these limitations, we draw inspiration from the in-context learning paradigm employed in state-of-the-art visual foundation models and large language models. In this paper, we introduce the first generalist weather foundation model (WeatherGFM), designed to address a wide spectrum of weather understanding tasks in a unified manner. More specifically, we initially unify the representation and definition of the diverse weather understanding tasks. Subsequently, we devised weather prompt formats to manage different weather data modalities, namely single, multiple, and temporal modalities. Finally, we adopt a visual prompting question-answering paradigm for the training of unified weather understanding tasks. Extensive experiments indicate that our WeatherGFM can effectively handle up to ten weather understanding tasks, including weather forecasting, super-resolution, weather image translation, and post-processing. Our method also showcases generalization ability on unseen tasks.
Abstract:Human trajectory modeling is essential for deciphering movement patterns and supporting advanced applications across various domains. However, existing methods are often tailored to specific tasks and regions, resulting in limitations related to task specificity, regional dependency, and data quality sensitivity. Addressing these challenges requires a universal human trajectory foundation model capable of generalizing and scaling across diverse tasks and geographic contexts. To this end, we propose UniTraj, a Universal human Trajectory foundation model that is task-adaptive, region-independent, and highly generalizable. To further enhance performance, we construct WorldTrace, the first large-scale, high-quality, globally distributed dataset sourced from open web platforms, encompassing 2.45 million trajectories with billions of points across 70 countries. Through multiple resampling and masking strategies designed for pre-training, UniTraj effectively overcomes geographic and task constraints, adapting to heterogeneous data quality. Extensive experiments across multiple trajectory analysis tasks and real-world datasets demonstrate that UniTraj consistently outperforms existing approaches in terms of scalability and adaptability. These results underscore the potential of UniTraj as a versatile, robust solution for a wide range of trajectory analysis applications, with WorldTrace serving as an ideal but non-exclusive foundation for training.
Abstract:Transformer models have achieved remarkable success in sequential recommender systems (SRSs). However, computing the attention matrix in traditional dot-product attention mechanisms results in a quadratic complexity with sequence lengths, leading to high computational costs for long-term sequential recommendation. Motivated by the above observation, we propose a novel L2-Normalized Linear Attention for the Transformer-based Sequential Recommender Systems (LinRec), which theoretically improves efficiency while preserving the learning capabilities of the traditional dot-product attention. Specifically, by thoroughly examining the equivalence conditions of efficient attention mechanisms, we show that LinRec possesses linear complexity while preserving the property of attention mechanisms. In addition, we reveal its latent efficiency properties by interpreting the proposed LinRec mechanism through a statistical lens. Extensive experiments are conducted based on two public benchmark datasets, demonstrating that the combination of LinRec and Transformer models achieves comparable or even superior performance than state-of-the-art Transformer-based SRS models while significantly improving time and memory efficiency.
Abstract:Recommender systems play a pivotal role across practical scenarios, showcasing remarkable capabilities in user preference modeling. However, the centralized learning paradigm predominantly used raises serious privacy concerns. The federated recommender system (FedRS) addresses this by updating models on clients, while a central server orchestrates training without accessing private data. Existing FedRS approaches, however, face unresolved challenges, including non-convex optimization, vulnerability, potential privacy leakage risk, and communication inefficiency. This paper addresses these challenges by reformulating the federated recommendation problem as a convex optimization issue, ensuring convergence to the global optimum. Based on this, we devise a novel method, RFRec, to tackle this optimization problem efficiently. In addition, we propose RFRecF, a highly efficient version that incorporates non-uniform stochastic gradient descent to improve communication efficiency. In user preference modeling, both methods learn local and global models, collaboratively learning users' common and personalized interests under the federated learning setting. Moreover, both methods significantly enhance communication efficiency, robustness, and privacy protection, with theoretical support. Comprehensive evaluations on four benchmark datasets demonstrate RFRec and RFRecF's superior performance compared to diverse baselines.
Abstract:GPRec explicitly categorizes users into groups in a learnable manner and aligns them with corresponding group embeddings. We design the dual group embedding space to offer a diverse perspective on group preferences by contrasting positive and negative patterns. On the individual level, GPRec identifies personal preferences from ID-like features and refines the obtained individual representations to be independent of group ones, thereby providing a robust complement to the group-level modeling. We also present various strategies for the flexible integration of GPRec into various DRS models. Rigorous testing of GPRec on three public datasets has demonstrated significant improvements in recommendation quality.
Abstract:High-resolution (HR) 3D magnetic resonance imaging (MRI) can provide detailed anatomical structural information, enabling precise segmentation of regions of interest for various medical image analysis tasks. Due to the high demands of acquisition device, collection of HR images with their annotations is always impractical in clinical scenarios. Consequently, segmentation results based on low-resolution (LR) images with large slice thickness are often unsatisfactory for subsequent tasks. In this paper, we propose a novel Resource-Efficient High-Resolution Segmentation framework (REHRSeg) to address the above-mentioned challenges in real-world applications, which can achieve HR segmentation while only employing the LR images as input. REHRSeg is designed to leverage self-supervised super-resolution (self-SR) to provide pseudo supervision, therefore the relatively easier-to-acquire LR annotated images generated by 2D scanning protocols can be directly used for model training. The main contribution to ensure the effectiveness in self-SR for enhancing segmentation is three-fold: (1) We mitigate the data scarcity problem in the medical field by using pseudo-data for training the segmentation model. (2) We design an uncertainty-aware super-resolution (UASR) head in self-SR to raise the awareness of segmentation uncertainty as commonly appeared on the ROI boundaries. (3) We align the spatial features for self-SR and segmentation through structural knowledge distillation to enable a better capture of region correlations. Experimental results demonstrate that REHRSeg achieves high-quality HR segmentation without intensive supervision, while also significantly improving the baseline performance for LR segmentation.
Abstract:Federated learning (FL), integrating group fairness mechanisms, allows multiple clients to collaboratively train a global model that makes unbiased decisions for different populations grouped by sensitive attributes (e.g., gender and race). Due to its distributed nature, previous studies have demonstrated that FL systems are vulnerable to model poisoning attacks. However, these studies primarily focus on perturbing accuracy, leaving a critical question unexplored: Can an attacker bypass the group fairness mechanisms in FL and manipulate the global model to be biased? The motivations for such an attack vary; an attacker might seek higher accuracy, yet fairness considerations typically limit the accuracy of the global model or aim to cause ethical disruption. To address this question, we design a novel form of attack in FL, termed Profit-driven Fairness Attack (PFATTACK), which aims not to degrade global model accuracy but to bypass fairness mechanisms. Our fundamental insight is that group fairness seeks to weaken the dependence of outputs on input attributes related to sensitive information. In the proposed PFATTACK, an attacker can recover this dependence through local fine-tuning across various sensitive groups, thereby creating a biased yet accuracy-preserving malicious model and injecting it into FL through model replacement. Compared to attacks targeting accuracy, PFATTACK is more stealthy. The malicious model in PFATTACK exhibits subtle parameter variations relative to the original global model, making it robust against detection and filtering by Byzantine-resilient aggregations. Extensive experiments on benchmark datasets are conducted for four fair FL frameworks and three Byzantine-resilient aggregations against model poisoning, demonstrating the effectiveness and stealth of PFATTACK in bypassing group fairness mechanisms in FL.
Abstract:Sequential Recommender Systems (SRS) are extensively applied across various domains to predict users' next interaction by modeling their interaction sequences. However, these systems typically grapple with the long-tail problem, where they struggle to recommend items that are less popular. This challenge results in a decline in user discovery and reduced earnings for vendors, negatively impacting the system as a whole. Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity, positioning them as a viable solution to this dilemma. In our paper, we present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of SRS. To align the capabilities of general-purpose LLM with the needs of the recommendation domain, we introduce a method called Supervised Contrastive Fine-Tuning (SCFT). This method involves attribute-level data augmentation and a custom contrastive loss designed to tailor LLM for enhanced recommendation performance. Moreover, we highlight the necessity of incorporating collaborative filtering signals into LLM-generated embeddings and propose Recommendation Adaptation Training (RAT) for this purpose. RAT refines the embeddings to be optimally suited for SRS. The embeddings derived from LLMEmb can be easily integrated with any SRS model, showcasing its practical utility. Extensive experimentation on three real-world datasets has shown that LLMEmb significantly improves upon current methods when applied across different SRS models.
Abstract:Graph Contrastive Learning (GCL) is a potent paradigm for self-supervised graph learning that has attracted attention across various application scenarios. However, GCL for learning on Text-Attributed Graphs (TAGs) has yet to be explored. Because conventional augmentation techniques like feature embedding masking cannot directly process textual attributes on TAGs. A naive strategy for applying GCL to TAGs is to encode the textual attributes into feature embeddings via a language model and then feed the embeddings into the following GCL module for processing. Such a strategy faces three key challenges: I) failure to avoid information loss, II) semantic loss during the text encoding phase, and III) implicit augmentation constraints that lead to uncontrollable and incomprehensible results. In this paper, we propose a novel GCL framework named LATEX-GCL to utilize Large Language Models (LLMs) to produce textual augmentations and LLMs' powerful natural language processing (NLP) abilities to address the three limitations aforementioned to pave the way for applying GCL to TAG tasks. Extensive experiments on four high-quality TAG datasets illustrate the superiority of the proposed LATEX-GCL method. The source codes and datasets are released to ease the reproducibility, which can be accessed via this link: https://anonymous.4open.science/r/LATEX-GCL-0712.
Abstract:Visual geo-localization demands in-depth knowledge and advanced reasoning skills to associate images with real-world geographic locations precisely. In general, traditional methods based on data-matching are hindered by the impracticality of storing adequate visual records of global landmarks. Recently, Large Vision-Language Models (LVLMs) have demonstrated the capability of geo-localization through Visual Question Answering (VQA), enabling a solution that does not require external geo-tagged image records. However, the performance of a single LVLM is still limited by its intrinsic knowledge and reasoning capabilities. Along this line, in this paper, we introduce a novel visual geo-localization framework called \name\ that integrates the inherent knowledge of multiple LVLM agents via inter-agent communication to achieve effective geo-localization of images. Furthermore, our framework employs a dynamic learning strategy to optimize the communication patterns among agents, reducing unnecessary discussions among agents and improving the efficiency of the framework. To validate the effectiveness of the proposed framework, we construct GeoGlobe, a novel dataset for visual geo-localization tasks. Extensive testing on the dataset demonstrates that our approach significantly outperforms state-of-the-art methods.