Jilin University
Abstract:High-dynamic scene optical flow is a challenging task, which suffers spatial blur and temporal discontinuous motion due to large displacement in frame imaging, thus deteriorating the spatiotemporal feature of optical flow. Typically, existing methods mainly introduce event camera to directly fuse the spatiotemporal features between the two modalities. However, this direct fusion is ineffective, since there exists a large gap due to the heterogeneous data representation between frame and event modalities. To address this issue, we explore a common-latent space as an intermediate bridge to mitigate the modality gap. In this work, we propose a novel common spatiotemporal fusion between frame and event modalities for high-dynamic scene optical flow, including visual boundary localization and motion correlation fusion. Specifically, in visual boundary localization, we figure out that frame and event share the similar spatiotemporal gradients, whose similarity distribution is consistent with the extracted boundary distribution. This motivates us to design the common spatiotemporal gradient to constrain the reference boundary localization. In motion correlation fusion, we discover that the frame-based motion possesses spatially dense but temporally discontinuous correlation, while the event-based motion has spatially sparse but temporally continuous correlation. This inspires us to use the reference boundary to guide the complementary motion knowledge fusion between the two modalities. Moreover, common spatiotemporal fusion can not only relieve the cross-modal feature discrepancy, but also make the fusion process interpretable for dense and continuous optical flow. Extensive experiments have been performed to verify the superiority of the proposed method.
Abstract:Semi-supervised learning (SSL) has garnered significant attention due to its ability to leverage limited labeled data and a large amount of unlabeled data to improve model generalization performance. Recent approaches achieve impressive successes by combining ideas from both consistency regularization and pseudo-labeling. However, these methods tend to underperform in the more realistic situations with relatively scarce labeled data. We argue that this issue arises because existing methods rely solely on the model's confidence, making them challenging to accurately assess the model's state and identify unlabeled examples contributing to the training phase when supervision information is limited, especially during the early stages of model training. In this paper, we propose a novel SSL model called CGMatch, which, for the first time, incorporates a new metric known as Count-Gap (CG). We demonstrate that CG is effective in discovering unlabeled examples beneficial for model training. Along with confidence, a commonly used metric in SSL, we propose a fine-grained dynamic selection (FDS) strategy. This strategy dynamically divides the unlabeled dataset into three subsets with different characteristics: easy-to-learn set, ambiguous set, and hard-to-learn set. By selective filtering subsets, and applying corresponding regularization with selected subsets, we mitigate the negative impact of incorrect pseudo-labels on model optimization and generalization. Extensive experimental results on several common SSL benchmarks indicate the effectiveness of CGMatch especially when the labeled data are particularly limited. Source code is available at https://github.com/BoCheng-96/CGMatch.
Abstract:Model merging integrates the parameters of multiple models into a unified model, combining their diverse capabilities. Existing model merging methods are often constrained by fixed parameter merging ratios. In this study, we propose Mixup Model Merge (M$^3$), an innovative approach inspired by the Mixup data augmentation technique. This method merges the parameters of two large language models (LLMs) by randomly generating linear interpolation ratios, allowing for a more flexible and comprehensive exploration of the parameter space. Extensive experiments demonstrate the superiority of our proposed M$^3$ method in merging fine-tuned LLMs: (1) it significantly improves performance across multiple tasks, (2) it enhances LLMs' out-of-distribution (OOD) robustness and adversarial robustness, (3) it achieves superior results when combined with sparsification techniques such as DARE, and (4) it offers a simple yet efficient solution that does not require additional computational resources. In conclusion, M$^3$ is a simple yet effective model merging method that significantly enhances the performance of the merged model by randomly generating contribution ratios for two fine-tuned LLMs. The code is available at https://github.com/MLGroupJLU/MixupModelMerge.
Abstract:Fine-tuning large language models (LLMs) is prohibitively expensive in terms of computational and memory costs. Low-rank Adaptation (LoRA), as one of the most popular parameter-efficient fine-tuning (PEFT) methods, offers a cost-effective alternative by approximating the model changes $\Delta W \in \mathbb{R}^{m \times n}$ through the product of down-projection matrix $A \in \mathbb{R}^{m \times r}$ and head matrix $B \in \mathbb{R}^{r \times n}$, where $r \ll \min(m, n)$. In real-world scenarios, LLMs are fine-tuned on data from multiple domains to perform tasks across various fields, embodying multi-task learning (MTL). LoRA often underperforms in such complex scenarios. To enhance LoRA's capability in multi-task learning, we propose R-LoRA, which incorporates Multi-Head Randomization. Multi-Head Randomization diversifies the head matrices through Multi-Head Random Initialization and Multi-Head Dropout, enabling more efficient learning of task-specific features while maintaining shared knowledge representation. Extensive experiments demonstrate that R-LoRA is better at capturing task-specific knowledge, thereby improving performance in multi-task scenarios. The code is available at https://github.com/jinda-liu/R-LoRA.
Abstract:Large language models (LLMs) face significant challenges when balancing multiple high-level objectives, such as generating coherent, relevant, and high-quality responses while maintaining efficient task adaptation across diverse tasks. To address these challenges, we introduce Transfer-Prompting, a novel two-stage framework designed to enhance cross-task adaptation in prompt generation. The framework comprises two key components: (1) source prompt construction, which refines the original prompts on source task datasets to generate source prompts with enhanced generalization ability, and (2) target prompt generation, which enhances cross-task adaptation of target prompts by fine-tuning a set of high-scored source prompts on task-specific datasets. In each optimization cycle, a reference LLM generates candidate prompts based on historical prompt-score pairs and task descriptions in our designed reference prompt. These candidate prompts are refined iteratively, while a scorer LLM evaluates their effectiveness using the multi-dimensional metrics designed in the objective prompts evaluator-a novel contribution in this work that provides a holistic evaluation of prompt quality and task performance. This feedback loop facilitates continuous refinement, optimizing both prompt quality and task-specific outcomes. We validate Transfer-Prompting through extensive experiments across 25 LLMs, including 7 foundational models and 18 specialized models, evaluated on 9 diverse datasets. The results demonstrate that Transfer-Prompting significantly improves task-specific performance, highlighting its potential for enhancing cross-task adaptation in LLMs. The code is available at https://github.com/llm172/Transfer-Prompting.
Abstract:Parameter-efficient fine-tuning (PEFT) is essential for adapting large language models (LLMs), with low-rank adaptation (LoRA) being the most popular approach. However, LoRA suffers from slow convergence, and some recent LoRA variants, such as PiSSA, primarily rely on Singular Value Decomposition (SVD) for initialization, leading to expensive computation. To mitigate these problems, we use the Nystr\"om method, which follows a three-matrix manipulation. We first introduce StructuredLoRA (SLoRA), which investigates adding a small intermediate matrix between the low-rank matrices A and B. Secondly, we propose Nystr\"omLoRA (NLoRA), which leverages Nystr\"om-based initialization for SLoRA to improve its effectiveness and efficiency. Finally, we propose IntermediateTune (IntTune), which explores fine-tuning exclusively on the intermediate matrix of NLoRA to further boost LLM efficiency. We evaluate our methods on five natural language generation (NLG) tasks and eight natural language understanding (NLU) tasks. On GSM8K, SLoRA and NLoRA achieve accuracies of 56.48% and 57.70%, surpassing LoRA by 33.52% and 36.41%, with only 3.67 million additional trainable parameters. IntTune improves average NLG performance over LoRA by 7.45% while using only 1.25% of its parameters. These results demonstrate the efficiency and effectiveness of our approach in enhancing model performance with minimal parameter overhead.
Abstract:Recent advancements in Large Language Models (LLMs) have demonstrated significant progress in various areas, such as text generation and code synthesis. However, the reliability of performance evaluation has come under scrutiny due to data contamination-the unintended overlap between training and test datasets. This overlap has the potential to artificially inflate model performance, as LLMs are typically trained on extensive datasets scraped from publicly available sources. These datasets often inadvertently overlap with the benchmarks used for evaluation, leading to an overestimation of the models' true generalization capabilities. In this paper, we first examine the definition and impacts of data contamination. Secondly, we review methods for contamination-free evaluation, focusing on three strategies: data updating-based methods, data rewriting-based methods, and prevention-based methods. Specifically, we highlight dynamic benchmarks and LLM-driven evaluation methods. Finally, we categorize contamination detecting methods based on model information dependency: white-Box, gray-Box, and black-Box detection approaches. Our survey highlights the requirements for more rigorous evaluation protocols and proposes future directions for addressing data contamination challenges.
Abstract:Direct Preference Optimization (DPO) is a widely adopted offline algorithm for preference-based reinforcement learning from human feedback (RLHF), designed to improve training simplicity and stability by redefining reward functions. However, DPO is hindered by several limitations, including length bias, memory inefficiency, and probability degradation. To address these challenges, we propose Length-Controlled Margin-Based Preference Optimization (LMPO), a more efficient and robust alternative. LMPO introduces a uniform reference model as an upper bound for the DPO loss, enabling a more accurate approximation of the original optimization objective. Additionally, an average log-probability optimization strategy is employed to minimize discrepancies between training and inference phases. A key innovation of LMPO lies in its Length-Controlled Margin-Based loss function, integrated within the Bradley-Terry framework. This loss function regulates response length while simultaneously widening the margin between preferred and rejected outputs. By doing so, it mitigates probability degradation for both accepted and discarded responses, addressing a significant limitation of existing methods. We evaluate LMPO against state-of-the-art preference optimization techniques on two open-ended large language models, Mistral and LLaMA3, across six conditional benchmarks. Our experimental results demonstrate that LMPO effectively controls response length, reduces probability degradation, and outperforms existing approaches. The code is available at \url{https://github.com/gengxuli/LMPO}.
Abstract:Large Language Models (LLMs) have achieved remarkable success in natural language processing, but their full fine-tuning remains resource-intensive. Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), have emerged as a practical solution by approximating parameter updates with low-rank matrices. However, LoRA often exhibits a "double descent" phenomenon during fine-tuning, where model performance degrades due to overfitting and limited expressiveness caused by low-rank constraints. To address this issue, we propose LoRA-GGPO (Gradient-Guided Perturbation Optimization), a novel method that leverages gradient and weight norms to generate targeted perturbations. By optimizing the sharpness of the loss landscape, LoRA-GGPO guides the model toward flatter minima, mitigating the double descent problem and improving generalization. Extensive experiments on natural language understanding (NLU) and generation (NLG) tasks demonstrate that LoRA-GGPO outperforms LoRA and its state-of-the-art variants. Furthermore, extended experiments specifically designed to analyze the double descent phenomenon confirm that LoRA-GGPO effectively alleviates this issue, producing more robust and generalizable models. Our work provides a robust and efficient solution for fine-tuning LLMs, with broad applicability in real-world scenarios. The code is available at https://github.com/llm172/LoRA-GGPO.
Abstract:Multi-turn instruction following capability constitutes a core competency of large language models (LLMs) in real-world applications. Existing evaluation benchmarks predominantly focus on fine-grained constraint satisfaction and domain-specific capability assessment, yet overlook the crucial structural dependency between dialogue turns that distinguishes multi-turn from single-turn interactions. This structural dependency not only reflects user intent but also establishes a second dimension for instruction following evaluation beyond constraint satisfaction. To address this gap, we propose StructFlowBench, a multi-turn instruction following benchmark with structural flow modeling. The benchmark innovatively defines a structural flow framework comprising six fundamental inter-turn relationships, which not only introduces novel structural constraints for model evaluation but also serves as generation parameters for creating customized dialogue flows tailored to specific scenarios. Adopting established LLM-based automatic evaluation methodologies, we conduct systematic evaluations of 13 leading open-source and closed-source LLMs. Experimental results reveal significant deficiencies in current models' comprehension of multi-turn dialogue structures. The code is available at \url{https://github.com/MLGroupJLU/StructFlowBench}.