Abstract:Due to the capability of dynamic state space models (SSMs) in capturing long-range dependencies with near-linear computational complexity, Mamba has shown notable performance in NLP tasks. This has inspired the rapid development of Mamba-based vision models, resulting in promising results in visual recognition tasks. However, such models are not capable of distilling features across layers through feature aggregation, interaction, and selection. Moreover, existing cross-layer feature aggregation methods designed for CNNs or ViTs are not practical in Mamba-based models due to high computational costs. Therefore, this paper aims to introduce an efficient cross-layer feature aggregation mechanism for Mamba-based vision backbone networks. Inspired by the Retinal Ganglion Cells (RGCs) in the human visual system, we propose a new sparse cross-layer connection mechanism termed SparX to effectively improve cross-layer feature interaction and reuse. Specifically, we build two different types of network layers: ganglion layers and normal layers. The former has higher connectivity and complexity, enabling multi-layer feature aggregation and interaction in an input-dependent manner. In contrast, the latter has lower connectivity and complexity. By interleaving these two types of layers, we design a new vision backbone network with sparsely cross-connected layers, achieving an excellent trade-off among model size, computational cost, memory cost, and accuracy in comparison to its counterparts. For instance, with fewer parameters, SparX-Mamba-T improves the top-1 accuracy of VMamba-T from 82.5% to 83.5%, while SparX-Swin-T achieves a 1.3% increase in top-1 accuracy compared to Swin-T. Extensive experimental results demonstrate that our new connection mechanism possesses both superior performance and generalization capabilities on various vision tasks.
Abstract:Three-dimensional (3D) medical images, such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), are essential for clinical applications. However, the need for diverse and comprehensive representations is particularly pronounced when considering the variability across different organs, diagnostic tasks, and imaging modalities. How to effectively interpret the intricate contextual information and extract meaningful insights from these images remains an open challenge to the community. While current self-supervised learning methods have shown potential, they often consider an image as a whole thereby overlooking the extensive, complex relationships among local regions from one or multiple images. In this work, we introduce a pioneering method for learning 3D medical image representations through an autoregressive pre-training framework. Our approach sequences various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence. By employing an autoregressive sequence modeling task, we predict the next visual token in the sequence, which allows our model to deeply understand and integrate the contextual information inherent in 3D medical images. Additionally, we implement a random startup strategy to avoid overestimating token relationships and to enhance the robustness of learning. The effectiveness of our approach is demonstrated by the superior performance over others on nine downstream tasks in public datasets.
Abstract:Recent Transformer-based diffusion models have shown remarkable performance, largely attributed to the ability of the self-attention mechanism to accurately capture both global and local contexts by computing all-pair interactions among input tokens. However, their quadratic complexity poses significant computational challenges for long-sequence inputs. Conversely, a recent state space model called Mamba offers linear complexity by compressing a filtered global context into a hidden state. Despite its efficiency, compression inevitably leads to information loss of fine-grained local dependencies among tokens, which are crucial for effective visual generative modeling. Motivated by these observations, we introduce Local Attentional Mamba (LaMamba) blocks that combine the strengths of self-attention and Mamba, capturing both global contexts and local details with linear complexity. Leveraging the efficient U-Net architecture, our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution, all while utilizing substantially fewer GFLOPs and a comparable number of parameters. Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62\% GFLOPs compared to DiT-XL/2, while achieving superior performance with comparable or fewer parameters.
Abstract:Large Language Models (LLMs) show promise for natural language generation in healthcare, but risk hallucinating factually incorrect information. Deploying LLMs for medical question answering necessitates reliable uncertainty estimation (UE) methods to detect hallucinations. In this work, we benchmark popular UE methods with different model sizes on medical question-answering datasets. Our results show that current approaches generally perform poorly in this domain, highlighting the challenge of UE for medical applications. We also observe that larger models tend to yield better results, suggesting a correlation between model size and the reliability of UE. To address these challenges, we propose Two-phase Verification, a probability-free Uncertainty Estimation approach. First, an LLM generates a step-by-step explanation alongside its initial answer, followed by formulating verification questions to check the factual claims in the explanation. The model then answers these questions twice: first independently, and then referencing the explanation. Inconsistencies between the two sets of answers measure the uncertainty in the original response. We evaluate our approach on three biomedical question-answering datasets using Llama 2 Chat models and compare it against the benchmarked baseline methods. The results show that our Two-phase Verification method achieves the best overall accuracy and stability across various datasets and model sizes, and its performance scales as the model size increases.
Abstract:Medical image analysis suffers from a shortage of data, whether annotated or not. This becomes even more pronounced when it comes to 3D medical images. Self-Supervised Learning (SSL) can partially ease this situation by using unlabeled data. However, most existing SSL methods can only make use of data in a single dimensionality (e.g. 2D or 3D), and are incapable of enlarging the training dataset by using data with differing dimensionalities jointly. In this paper, we propose a new cross-dimensional SSL framework based on a pseudo-3D transformation (CDSSL-P3D), that can leverage both 2D and 3D data for joint pre-training. Specifically, we introduce an image transformation based on the im2col algorithm, which converts 2D images into a format consistent with 3D data. This transformation enables seamless integration of 2D and 3D data, and facilitates cross-dimensional self-supervised learning for 3D medical image analysis. We run extensive experiments on 13 downstream tasks, including 2D and 3D classification and segmentation. The results indicate that our CDSSL-P3D achieves superior performance, outperforming other advanced SSL methods.
Abstract:Recent advances in Iterative Vision-and-Language Navigation (IVLN) introduce a more meaningful and practical paradigm of VLN by maintaining the agent's memory across tours of scenes. Although the long-term memory aligns better with the persistent nature of the VLN task, it poses more challenges on how to utilize the highly unstructured navigation memory with extremely sparse supervision. Towards this end, we propose OVER-NAV, which aims to go over and beyond the current arts of IVLN techniques. In particular, we propose to incorporate LLMs and open-vocabulary detectors to distill key information and establish correspondence between multi-modal signals. Such a mechanism introduces reliable cross-modal supervision and enables on-the-fly generalization to unseen scenes without the need of extra annotation and re-training. To fully exploit the interpreted navigation data, we further introduce a structured representation, coded Omnigraph, to effectively integrate multi-modal information along the tour. Accompanied with a novel omnigraph fusion mechanism, OVER-NAV is able to extract the most relevant knowledge from omnigraph for a more accurate navigating action. In addition, OVER-NAV seamlessly supports both discrete and continuous environments under a unified framework. We demonstrate the superiority of OVER-NAV in extensive experiments.
Abstract:The acquisition of large-scale, high-quality data is a resource-intensive and time-consuming endeavor. Compared to conventional Data Augmentation (DA) techniques (e.g. cropping and rotation), exploiting prevailing diffusion models for data generation has received scant attention in classification tasks. Existing generative DA methods either inadequately bridge the domain gap between real-world and synthesized images, or inherently suffer from a lack of diversity. To solve these issues, this paper proposes a new classification-oriented framework DreamDA, which enables data synthesis and label generation by way of diffusion models. DreamDA generates diverse samples that adhere to the original data distribution by considering training images in the original data as seeds and perturbing their reverse diffusion process. In addition, since the labels of the generated data may not align with the labels of their corresponding seed images, we introduce a self-training paradigm for generating pseudo labels and training classifiers using the synthesized data. Extensive experiments across four tasks and five datasets demonstrate consistent improvements over strong baselines, revealing the efficacy of DreamDA in synthesizing high-quality and diverse images with accurate labels. Our code will be available at https://github.com/yunxiangfu2001/DreamDA.
Abstract:Vision language models (VLMs) have experienced rapid advancements through the integration of large language models (LLMs) with image-text pairs, yet they struggle with detailed regional visual understanding due to limited spatial awareness of the vision encoder, and the use of coarse-grained training data that lacks detailed, region-specific captions. To address this, we introduce RegionGPT (short as RGPT), a novel framework designed for complex region-level captioning and understanding. RGPT enhances the spatial awareness of regional representation with simple yet effective modifications to existing visual encoders in VLMs. We further improve performance on tasks requiring a specific output scope by integrating task-guided instruction prompts during both training and inference phases, while maintaining the model's versatility for general-purpose tasks. Additionally, we develop an automated region caption data generation pipeline, enriching the training set with detailed region-level captions. We demonstrate that a universal RGPT model can be effectively applied and significantly enhancing performance across a range of region-level tasks, including but not limited to complex region descriptions, reasoning, object classification, and referring expressions comprehension.
Abstract:Automated classification of liver lesions in multi-phase CT and MR scans is of clinical significance but challenging. This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework, specifically designed for liver lesion classification in 3D multi-phase CT and MR imaging with varying phase counts. The proposed SDR-Former utilizes a streamlined Siamese Neural Network (SNN) to process multi-phase imaging inputs, possessing robust feature representations while maintaining computational efficiency. The weight-sharing feature of the SNN is further enriched by a hybrid Dual-Resolution Transformer (DR-Former), comprising a 3D Convolutional Neural Network (CNN) and a tailored 3D Transformer for processing high- and low-resolution images, respectively. This hybrid sub-architecture excels in capturing detailed local features and understanding global contextual information, thereby, boosting the SNN's feature extraction capabilities. Additionally, a novel Adaptive Phase Selection Module (APSM) is introduced, promoting phase-specific intercommunication and dynamically adjusting each phase's influence on the diagnostic outcome. The proposed SDR-Former framework has been validated through comprehensive experiments on two clinical datasets: a three-phase CT dataset and an eight-phase MR dataset. The experimental results affirm the efficacy of the proposed framework. To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public. This pioneering dataset, being the first publicly available multi-phase MR dataset in this field, also underpins the MICCAI LLD-MMRI Challenge. The dataset is accessible at:https://bit.ly/3IyYlgN.
Abstract:Conventional domain adaptation typically transfers knowledge from a source domain to a stationary target domain. However, in many real-world cases, target data usually emerge sequentially and have continuously evolving distributions. Restoring and adapting to such target data results in escalating computational and resource consumption over time. Hence, it is vital to devise algorithms to address the evolving domain adaptation (EDA) problem, \emph{i.e.,} adapting models to evolving target domains without access to historic target domains. To achieve this goal, we propose a simple yet effective approach, termed progressive conservative adaptation (PCAda). To manage new target data that diverges from previous distributions, we fine-tune the classifier head based on the progressively updated class prototypes. Moreover, as adjusting to the most recent target domain can interfere with the features learned from previous target domains, we develop a conservative sparse attention mechanism. This mechanism restricts feature adaptation within essential dimensions, thus easing the inference related to historical knowledge. The proposed PCAda is implemented with a meta-learning framework, which achieves the fast adaptation of the classifier with the help of the progressively updated class prototypes in the inner loop and learns a generalized feature without severely interfering with the historic knowledge via the conservative sparse attention in the outer loop. Experiments on Rotated MNIST, Caltran, and Portraits datasets demonstrate the effectiveness of our method.