Abstract:Sequential recommendation (SR) aims to model the sequential dependencies in users' historical interactions to better capture their evolving interests. However, existing SR approaches primarily rely on collaborative data, which leads to limitations such as the cold-start problem and sub-optimal performance. Meanwhile, despite the success of large language models (LLMs), their application in industrial recommender systems is hindered by high inference latency, inability to capture all distribution statistics, and catastrophic forgetting. To this end, we propose a novel Pre-train, Align, and Disentangle (PAD) paradigm to empower recommendation models with LLMs. Specifically, we first pre-train both the SR and LLM models to get collaborative and textual embeddings. Next, a characteristic recommendation-anchored alignment loss is proposed using multi-kernel maximum mean discrepancy with Gaussian kernels. Finally, a triple-experts architecture, consisting aligned and modality-specific experts with disentangled embeddings, is fine-tuned in a frequency-aware manner. Experiments conducted on three public datasets demonstrate the effectiveness of PAD, showing significant improvements and compatibility with various SR backbone models, especially on cold items. The implementation code and datasets will be publicly available.
Abstract:Recommender systems play a pivotal role across practical scenarios, showcasing remarkable capabilities in user preference modeling. However, the centralized learning paradigm predominantly used raises serious privacy concerns. The federated recommender system (FedRS) addresses this by updating models on clients, while a central server orchestrates training without accessing private data. Existing FedRS approaches, however, face unresolved challenges, including non-convex optimization, vulnerability, potential privacy leakage risk, and communication inefficiency. This paper addresses these challenges by reformulating the federated recommendation problem as a convex optimization issue, ensuring convergence to the global optimum. Based on this, we devise a novel method, RFRec, to tackle this optimization problem efficiently. In addition, we propose RFRecF, a highly efficient version that incorporates non-uniform stochastic gradient descent to improve communication efficiency. In user preference modeling, both methods learn local and global models, collaboratively learning users' common and personalized interests under the federated learning setting. Moreover, both methods significantly enhance communication efficiency, robustness, and privacy protection, with theoretical support. Comprehensive evaluations on four benchmark datasets demonstrate RFRec and RFRecF's superior performance compared to diverse baselines.
Abstract:Transformer models have achieved remarkable success in sequential recommender systems (SRSs). However, computing the attention matrix in traditional dot-product attention mechanisms results in a quadratic complexity with sequence lengths, leading to high computational costs for long-term sequential recommendation. Motivated by the above observation, we propose a novel L2-Normalized Linear Attention for the Transformer-based Sequential Recommender Systems (LinRec), which theoretically improves efficiency while preserving the learning capabilities of the traditional dot-product attention. Specifically, by thoroughly examining the equivalence conditions of efficient attention mechanisms, we show that LinRec possesses linear complexity while preserving the property of attention mechanisms. In addition, we reveal its latent efficiency properties by interpreting the proposed LinRec mechanism through a statistical lens. Extensive experiments are conducted based on two public benchmark datasets, demonstrating that the combination of LinRec and Transformer models achieves comparable or even superior performance than state-of-the-art Transformer-based SRS models while significantly improving time and memory efficiency.
Abstract:Sequential Recommender Systems (SRS) are extensively applied across various domains to predict users' next interaction by modeling their interaction sequences. However, these systems typically grapple with the long-tail problem, where they struggle to recommend items that are less popular. This challenge results in a decline in user discovery and reduced earnings for vendors, negatively impacting the system as a whole. Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity, positioning them as a viable solution to this dilemma. In our paper, we present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of SRS. To align the capabilities of general-purpose LLM with the needs of the recommendation domain, we introduce a method called Supervised Contrastive Fine-Tuning (SCFT). This method involves attribute-level data augmentation and a custom contrastive loss designed to tailor LLM for enhanced recommendation performance. Moreover, we highlight the necessity of incorporating collaborative filtering signals into LLM-generated embeddings and propose Recommendation Adaptation Training (RAT) for this purpose. RAT refines the embeddings to be optimally suited for SRS. The embeddings derived from LLMEmb can be easily integrated with any SRS model, showcasing its practical utility. Extensive experimentation on three real-world datasets has shown that LLMEmb significantly improves upon current methods when applied across different SRS models.
Abstract:In various domains, Sequential Recommender Systems (SRS) have become essential due to their superior capability to discern intricate user preferences. Typically, SRS utilize transformer-based architectures to forecast the subsequent item within a sequence. Nevertheless, the quadratic computational complexity inherent in these models often leads to inefficiencies, hindering the achievement of real-time recommendations. Mamba, a recent advancement, has exhibited exceptional performance in time series prediction, significantly enhancing both efficiency and accuracy. However, integrating Mamba directly into SRS poses several challenges. Its inherently unidirectional nature may constrain the model's capacity to capture the full context of user-item interactions, while its instability in state estimation can compromise its ability to detect short-term patterns within interaction sequences. To overcome these issues, we introduce a new framework named \textbf{\underline{S}}elect\textbf{\underline{I}}ve \textbf{\underline{G}}ated \textbf{\underline{MA}}mba (SIGMA). This framework leverages a Partially Flipped Mamba (PF-Mamba) to construct a bidirectional architecture specifically tailored to improve contextual modeling. Additionally, an input-sensitive Dense Selective Gate (DS Gate) is employed to optimize directional weights and enhance the processing of sequential information in PF-Mamba. For short sequence modeling, we have also developed a Feature Extract GRU (FE-GRU) to efficiently capture short-term dependencies. Empirical results indicate that SIGMA outperforms current models on five real-world datasets. Our implementation code is available at \url{https://github.com/ziwliu-cityu/SIMGA} to ease reproducibility.
Abstract:Existing RGBT tracking methods often design various interaction models to perform cross-modal fusion of each layer, but can not execute the feature interactions among all layers, which plays a critical role in robust multimodal representation, due to large computational burden. To address this issue, this paper presents a novel All-layer multimodal Interaction Network, named AINet, which performs efficient and effective feature interactions of all modalities and layers in a progressive fusion Mamba, for robust RGBT tracking. Even though modality features in different layers are known to contain different cues, it is always challenging to build multimodal interactions in each layer due to struggling in balancing interaction capabilities and efficiency. Meanwhile, considering that the feature discrepancy between RGB and thermal modalities reflects their complementary information to some extent, we design a Difference-based Fusion Mamba (DFM) to achieve enhanced fusion of different modalities with linear complexity. When interacting with features from all layers, a huge number of token sequences (3840 tokens in this work) are involved and the computational burden is thus large. To handle this problem, we design an Order-dynamic Fusion Mamba (OFM) to execute efficient and effective feature interactions of all layers by dynamically adjusting the scan order of different layers in Mamba. Extensive experiments on four public RGBT tracking datasets show that AINet achieves leading performance against existing state-of-the-art methods.
Abstract:Reranking is a critical component in recommender systems, playing an essential role in refining the output of recommendation algorithms. Traditional reranking models have focused predominantly on accuracy, but modern applications demand consideration of additional criteria such as diversity and fairness. Existing reranking approaches often fail to harmonize these diverse criteria effectively at the model level. Moreover, these models frequently encounter challenges with scalability and personalization due to their complexity and the varying significance of different reranking criteria in diverse scenarios. In response, we introduce a comprehensive reranking framework enhanced by LLM, designed to seamlessly integrate various reranking criteria while maintaining scalability and facilitating personalized recommendations. This framework employs a fully connected graph structure, allowing the LLM to simultaneously consider multiple aspects such as accuracy, diversity, and fairness through a coherent Chain-of-Thought (CoT) process. A customizable input mechanism is also integrated, enabling the tuning of the language model's focus to meet specific reranking needs. We validate our approach using three popular public datasets, where our framework demonstrates superior performance over existing state-of-the-art reranking models in balancing multiple criteria. The code for this implementation is publicly available.
Abstract:Multi-modal feature fusion as a core investigative component of RGBT tracking emerges numerous fusion studies in recent years. However, existing RGBT tracking methods widely adopt fixed fusion structures to integrate multi-modal feature, which are hard to handle various challenges in dynamic scenarios. To address this problem, this work presents a novel \emph{A}ttention-based \emph{F}usion rou\emph{ter} called AFter, which optimizes the fusion structure to adapt to the dynamic challenging scenarios, for robust RGBT tracking. In particular, we design a fusion structure space based on the hierarchical attention network, each attention-based fusion unit corresponding to a fusion operation and a combination of these attention units corresponding to a fusion structure. Through optimizing the combination of attention-based fusion units, we can dynamically select the fusion structure to adapt to various challenging scenarios. Unlike complex search of different structures in neural architecture search algorithms, we develop a dynamic routing algorithm, which equips each attention-based fusion unit with a router, to predict the combination weights for efficient optimization of the fusion structure. Extensive experiments on five mainstream RGBT tracking datasets demonstrate the superior performance of the proposed AFter against state-of-the-art RGBT trackers. We release the code in https://github.com/Alexadlu/AFter.
Abstract:Deep Recommender Systems (DRS) are increasingly dependent on a large number of feature fields for more precise recommendations. Effective feature selection methods are consequently becoming critical for further enhancing the accuracy and optimizing storage efficiencies to align with the deployment demands. This research area, particularly in the context of DRS, is nascent and faces three core challenges. Firstly, variant experimental setups across research papers often yield unfair comparisons, obscuring practical insights. Secondly, the existing literature's lack of detailed analysis on selection attributes, based on large-scale datasets and a thorough comparison among selection techniques and DRS backbones, restricts the generalizability of findings and impedes deployment on DRS. Lastly, research often focuses on comparing the peak performance achievable by feature selection methods, an approach that is typically computationally infeasible for identifying the optimal hyperparameters and overlooks evaluating the robustness and stability of these methods. To bridge these gaps, this paper presents ERASE, a comprehensive bEnchmaRk for feAture SElection for DRS. ERASE comprises a thorough evaluation of eleven feature selection methods, covering both traditional and deep learning approaches, across four public datasets, private industrial datasets, and a real-world commercial platform, achieving significant enhancement. Our code is available online for ease of reproduction.
Abstract:Temporal Point Processes (TPPs) hold a pivotal role in modeling event sequences across diverse domains, including social networking and e-commerce, and have significantly contributed to the advancement of recommendation systems and information retrieval strategies. Through the analysis of events such as user interactions and transactions, TPPs offer valuable insights into behavioral patterns, facilitating the prediction of future trends. However, accurately forecasting future events remains a formidable challenge due to the intricate nature of these patterns. The integration of Neural Networks with TPPs has ushered in the development of advanced deep TPP models. While these models excel at processing complex and nonlinear temporal data, they encounter limitations in modeling intensity functions, grapple with computational complexities in integral computations, and struggle to capture long-range temporal dependencies effectively. In this study, we introduce the CuFun model, representing a novel approach to TPPs that revolves around the Cumulative Distribution Function (CDF). CuFun stands out by uniquely employing a monotonic neural network for CDF representation, utilizing past events as a scaling factor. This innovation significantly bolsters the model's adaptability and precision across a wide range of data scenarios. Our approach addresses several critical issues inherent in traditional TPP modeling: it simplifies log-likelihood calculations, extends applicability beyond predefined density function forms, and adeptly captures long-range temporal patterns. Our contributions encompass the introduction of a pioneering CDF-based TPP model, the development of a methodology for incorporating past event information into future event prediction, and empirical validation of CuFun's effectiveness through extensive experimentation on synthetic and real-world datasets.