Abstract:With recent advances in large language models (LLMs), there has been emerging numbers of research in developing Semantic IDs based on LLMs to enhance the performance of recommendation systems. However, the dimension of these embeddings needs to match that of the ID embedding in recommendation, which is usually much smaller than the original length. Such dimension compression results in inevitable losses in discriminability and dimension robustness of the LLM embeddings, which motivates us to scale up the semantic representation. In this paper, we propose Mixture-of-Codes, which first constructs multiple independent codebooks for LLM representation in the indexing stage, and then utilizes the Semantic Representation along with a fusion module for the downstream recommendation stage. Extensive analysis and experiments demonstrate that our method achieves superior discriminability and dimension robustness scalability, leading to the best scale-up performance in recommendations.
Abstract:Lifelong user behavior sequences, comprising up to tens of thousands of history behaviors, are crucial for capturing user interests and predicting user responses in modern recommendation systems. A two-stage paradigm is typically adopted to handle these long sequences: a few relevant behaviors are first searched from the original long sequences via an attention mechanism in the first stage and then aggregated with the target item to construct a discriminative representation for prediction in the second stage. In this work, we identify and characterize, for the first time, a neglected deficiency in existing long-sequence recommendation models: a single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes. Initial attempts to address this issue using linear projections -- a technique borrowed from language processing -- proved ineffective, shedding light on the unique challenges of recommendation models. To overcome this, we propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are initialized and learned separately to fully decouple attention and representation. Extensive experiments and analysis demonstrate that DARE provides more accurate search of correlated behaviors and outperforms baselines with AUC gains up to 0.9% on public datasets and notable online system improvements. Furthermore, decoupling embedding spaces allows us to reduce the attention embedding dimension and accelerate the search procedure by 50% without significant performance impact, enabling more efficient, high-performance online serving.
Abstract:Multi-domain learning (MDL) has emerged as a prominent research area aimed at enhancing the quality of personalized services. The key challenge in MDL lies in striking a balance between learning commonalities across domains while preserving the distinct characteristics of each domain. However, this gives rise to a challenging dilemma. On one hand, a model needs to leverage domain-specific modules, such as experts or embeddings, to preserve the uniqueness of each domain. On the other hand, due to the long-tailed distributions observed in real-world domains, some tail domains may lack sufficient samples to fully learn their corresponding modules. Unfortunately, existing approaches have not adequately addressed this dilemma. To address this issue, we propose a novel model called Crocodile, which stands for Cross-experts Covariance Loss for Disentangled Learning. Crocodile adopts a multi-embedding paradigm to facilitate model learning and employs a Covariance Loss on these embeddings to disentangle them. This disentanglement enables the model to capture diverse user interests across domains effectively. Additionally, we introduce a novel gating mechanism to further enhance the capabilities of Crocodile. Through empirical analysis, we demonstrate that our proposed method successfully resolves these two challenges and outperforms all state-of-the-art methods on publicly available datasets. We firmly believe that the analytical perspectives and design concept of disentanglement presented in our work can pave the way for future research in the field of MDL.
Abstract:Click-through rate (CTR) prediction tasks play a pivotal role in real-world applications, particularly in recommendation systems and online advertising. A significant research branch in this domain focuses on user behavior modeling. Current research predominantly centers on modeling co-occurrence relationships between the target item and items previously interacted with by users in their historical data. However, this focus neglects the intricate modeling of user behavior patterns. In reality, the abundance of user interaction records encompasses diverse behavior patterns, indicative of a spectrum of habitual paradigms. These patterns harbor substantial potential to significantly enhance CTR prediction performance. To harness the informational potential within user behavior patterns, we extend Target Attention (TA) to Target Pattern Attention (TPA) to model pattern-level dependencies. Furthermore, three critical challenges demand attention: the inclusion of unrelated items within behavior patterns, data sparsity in behavior patterns, and computational complexity arising from numerous patterns. To address these challenges, we introduce the Deep Pattern Network (DPN), designed to comprehensively leverage information from user behavior patterns. DPN efficiently retrieves target-related user behavior patterns using a target-aware attention mechanism. Additionally, it contributes to refining user behavior patterns through a pre-training paradigm based on self-supervised learning while promoting dependency learning within sparse patterns. Our comprehensive experiments, conducted across three public datasets, substantiate the superior performance and broad compatibility of DPN.
Abstract:Click-through rate (CTR) prediction holds significant importance in the realm of online advertising. While many existing approaches treat it as a binary classification problem and utilize binary cross entropy (BCE) as the optimization objective, recent advancements have indicated that combining BCE loss with ranking loss yields substantial performance improvements. However, the full efficacy of this combination loss remains incompletely understood. In this paper, we uncover a new challenge associated with BCE loss in scenarios with sparse positive feedback, such as CTR prediction: the gradient vanishing for negative samples. Subsequently, we introduce a novel perspective on the effectiveness of ranking loss in CTR prediction, highlighting its ability to generate larger gradients on negative samples, thereby mitigating their optimization issues and resulting in improved classification ability. Our perspective is supported by extensive theoretical analysis and empirical evaluation conducted on publicly available datasets. Furthermore, we successfully deployed the ranking loss in Tencent's online advertising system, achieving notable lifts of 0.70% and 1.26% in Gross Merchandise Value (GMV) for two main scenarios. The code for our approach is openly accessible at the following GitHub repository: https://github.com/SkylerLinn/Understanding-the-Ranking-Loss.
Abstract:In this paper, we present an industry ad recommendation system, paying attention to the challenges and practices of learning appropriate representations. Our study begins by showcasing our approaches to preserving priors when encoding features of diverse types into embedding representations. Specifically, we address sequence features, numeric features, pre-trained embedding features, as well as sparse ID features. Moreover, we delve into two pivotal challenges associated with feature representation: the dimensional collapse of embeddings and the interest entanglement across various tasks or scenarios. Subsequently, we propose several practical approaches to effectively tackle these two challenges. We then explore several training techniques to facilitate model optimization, reduce bias, and enhance exploration. Furthermore, we introduce three analysis tools that enable us to comprehensively study feature correlation, dimensional collapse, and interest entanglement. This work builds upon the continuous efforts of Tencent's ads recommendation team in the last decade. It not only summarizes general design principles but also presents a series of off-the-shelf solutions and analysis tools. The reported performance is based on our online advertising platform, which handles hundreds of billions of requests daily, serving millions of ads to billions of users.
Abstract:Recent advances in deep foundation models have led to a promising trend of developing large recommendation models to leverage vast amounts of available data. However, we experiment to scale up existing recommendation models and observe that the enlarged models do not improve satisfactorily. In this context, we investigate the embedding layers of enlarged models and identify a phenomenon of embedding collapse, which ultimately hinders scalability, wherein the embedding matrix tends to reside in a low-dimensional subspace. Through empirical and theoretical analysis, we demonstrate that the feature interaction module specific to recommendation models has a two-sided effect. On the one hand, the interaction restricts embedding learning when interacting with collapsed embeddings, exacerbating the collapse issue. On the other hand, feature interaction is crucial in mitigating the fitting of spurious features, thereby improving scalability. Based on this analysis, we propose a simple yet effective multi-embedding design incorporating embedding-set-specific interaction modules to capture diverse patterns and reduce collapse. Extensive experiments demonstrate that this proposed design provides consistent scalability for various recommendation models.
Abstract:Multi-domain learning (MDL) aims to train a model with minimal average risk across multiple overlapping but non-identical domains. To tackle the challenges of dataset bias and domain domination, numerous MDL approaches have been proposed from the perspectives of seeking commonalities by aligning distributions to reduce domain gap or reserving differences by implementing domain-specific towers, gates, and even experts. MDL models are becoming more and more complex with sophisticated network architectures or loss functions, introducing extra parameters and enlarging computation costs. In this paper, we propose a frustratingly easy and hyperparameter-free multi-domain learning method named Decoupled Training(D-Train). D-Train is a tri-phase general-to-specific training strategy that first pre-trains on all domains to warm up a root model, then post-trains on each domain by splitting into multi heads, and finally fine-tunes the heads by fixing the backbone, enabling decouple training to achieve domain independence. Despite its extraordinary simplicity and efficiency, D-Train performs remarkably well in extensive evaluations of various datasets from standard benchmarks to applications of satellite imagery and recommender systems.
Abstract:Multi-task learning (MTL) has gained significant popularity in recommendation systems as it enables the simultaneous optimization of multiple objectives. A key challenge in MTL is the occurrence of negative transfer, where the performance of certain tasks deteriorates due to conflicts between tasks. Existing research has explored negative transfer by treating all samples as a whole, overlooking the inherent complexities within them. To this end, we delve into the intricacies of samples by splitting them based on the relative amount of positive feedback among tasks. Surprisingly, negative transfer still occurs in existing MTL methods on samples that receive comparable feedback across tasks. It is worth noting that existing methods commonly employ a shared-embedding paradigm, and we hypothesize that their failure can be attributed to the limited capacity of modeling diverse user preferences across tasks using such universal embeddings. In this paper, we introduce a novel paradigm called Shared and Task-specific EMbeddings (STEM) that aims to incorporate both shared and task-specific embeddings to effectively capture task-specific user preferences. Under this paradigm, we propose a simple model STEM-Net, which is equipped with shared and task-specific embedding tables, along with a customized gating network with stop-gradient operations to facilitate the learning of these embeddings. Remarkably, STEM-Net demonstrates exceptional performance on comparable samples, surpassing the Single-Task Like model and achieves positive transfer. Comprehensive evaluation on three public MTL recommendation datasets demonstrates that STEM-Net outperforms state-of-the-art models by a substantial margin, providing evidence of its effectiveness and superiority.
Abstract:The history of user behaviors constitutes one of the most significant characteristics in predicting the click-through rate (CTR), owing to their strong semantic and temporal correlation with the target item. While the literature has individually examined each of these correlations, research has yet to analyze them in combination, that is, the quadruple correlation of (behavior semantics, target semantics, behavior temporal, and target temporal). The effect of this correlation on performance and the extent to which existing methods learn it remain unknown. To address this gap, we empirically measure the quadruple correlation and observe intuitive yet robust quadruple patterns. We measure the learned correlation of several representative user behavior methods, but to our surprise, none of them learn such a pattern, especially the temporal one. In this paper, we propose the Temporal Interest Network (TIN) to capture the quadruple semantic and temporal correlation between behaviors and the target. We achieve this by incorporating target-aware temporal encoding, in addition to semantic embedding, to represent behaviors and the target. Furthermore, we deploy target-aware attention, along with target-aware representation, to explicitly conduct the 4-way interaction. We performed comprehensive evaluations on the Amazon and Alibaba datasets. Our proposed TIN outperforms the best-performing baselines by 0.43\% and 0.29\% on two datasets, respectively. Comprehensive analysis and visualization show that TIN is indeed capable of learning the quadruple correlation effectively, while all existing methods fail to do so. We provide our implementation of TIN in Tensorflow.