Abstract:Generating Chain-of-Thought (CoT) before deriving the answer can effectively improve the reasoning capabilities of large language models (LLMs) and significantly improve the accuracy of the generated answer. However, in most cases, the length of the generated CoT is much longer than the desired final answer, which results in additional decoding costs. Furthermore, existing research has discovered that shortening the reasoning steps in CoT, even while preserving the key information, diminishes LLMs' abilities. These phenomena make it difficult to use LLMs and CoT in many real-world applications that only require the final answer and are sensitive to latency, such as search and recommendation. To reduce the costs of model decoding and shorten the length of the generated CoT, this paper presents $\textbf{C}$onditioned $\textbf{C}$ompressed $\textbf{C}$hain-of-$\textbf{T}$hought (C3oT), a CoT compression framework that involves a compressor to compress an original longer CoT into a shorter CoT while maintaining key information and interpretability, a conditioned training method to train LLMs with both longer CoT and shorter CoT simultaneously to learn the corresponding relationships between them, and a conditioned inference method to gain the reasoning ability learned from longer CoT by generating shorter CoT. We conduct experiments over four datasets from arithmetic and commonsense scenarios, showing that the proposed method is capable of compressing the length of generated CoT by up to more than 50% without compromising its effectiveness.
Abstract:GUIs have long been central to human-computer interaction, providing an intuitive and visually-driven way to access and interact with digital systems. The advent of LLMs, particularly multimodal models, has ushered in a new era of GUI automation. They have demonstrated exceptional capabilities in natural language understanding, code generation, and visual processing. This has paved the way for a new generation of LLM-brained GUI agents capable of interpreting complex GUI elements and autonomously executing actions based on natural language instructions. These agents represent a paradigm shift, enabling users to perform intricate, multi-step tasks through simple conversational commands. Their applications span across web navigation, mobile app interactions, and desktop automation, offering a transformative user experience that revolutionizes how individuals interact with software. This emerging field is rapidly advancing, with significant progress in both research and industry. To provide a structured understanding of this trend, this paper presents a comprehensive survey of LLM-brained GUI agents, exploring their historical evolution, core components, and advanced techniques. We address research questions such as existing GUI agent frameworks, the collection and utilization of data for training specialized GUI agents, the development of large action models tailored for GUI tasks, and the evaluation metrics and benchmarks necessary to assess their effectiveness. Additionally, we examine emerging applications powered by these agents. Through a detailed analysis, this survey identifies key research gaps and outlines a roadmap for future advancements in the field. By consolidating foundational knowledge and state-of-the-art developments, this work aims to guide both researchers and practitioners in overcoming challenges and unlocking the full potential of LLM-brained GUI agents.
Abstract:Modeling feature interactions plays a crucial role in accurately predicting click-through rates (CTR) in advertising systems. To capture the intricate patterns of interaction, many existing models employ matrix-factorization techniques to represent features as lower-dimensional embedding vectors, enabling the modeling of interactions as products between these embeddings. In this paper, we propose a general framework called IPA to systematically unify these models. Our framework comprises three key components: the Interaction Function, which facilitates feature interaction; the Layer Pooling, which constructs higher-level interaction layers; and the Layer Aggregator, which combines the outputs of all layers to serve as input for the subsequent classifier. We demonstrate that most existing models can be categorized within our framework by making specific choices for these three components. Through extensive experiments and a dimensional collapse analysis, we evaluate the performance of these choices. Furthermore, by leveraging the most powerful components within our framework, we introduce a novel model that achieves competitive results compared to state-of-the-art CTR models. PFL gets significant GMV lift during online A/B test in Tencent's advertising platform and has been deployed as the production model in several primary scenarios.
Abstract:Zero-shot anomaly detection (ZSAD) recognizes and localizes anomalies in previously unseen objects by establishing feature mapping between textual prompts and inspection images, demonstrating excellent research value in flexible industrial manufacturing. However, existing ZSAD methods are limited by closed-world settings, struggling to unseen defects with predefined prompts. Recently, adapting Multimodal Large Language Models (MLLMs) for Industrial Anomaly Detection (IAD) presents a viable solution. Unlike fixed-prompt methods, MLLMs exhibit a generative paradigm with open-ended text interpretation, enabling more adaptive anomaly analysis. However, this adaption faces inherent challenges as anomalies often manifest in fine-grained regions and exhibit minimal visual discrepancies from normal samples. To address these challenges, we propose a novel framework VMAD (Visual-enhanced MLLM Anomaly Detection) that enhances MLLM with visual-based IAD knowledge and fine-grained perception, simultaneously providing precise detection and comprehensive analysis of anomalies. Specifically, we design a Defect-Sensitive Structure Learning scheme that transfers patch-similarities cues from visual branch to our MLLM for improved anomaly discrimination. Besides, we introduce a novel visual projector, Locality-enhanced Token Compression, which mines multi-level features in local contexts to enhance fine-grained detection. Furthermore, we introduce the Real Industrial Anomaly Detection (RIAD), a comprehensive IAD dataset with detailed anomaly descriptions and analyses, offering a valuable resource for MLLM-based IAD development. Extensive experiments on zero-shot benchmarks, including MVTec-AD, Visa, WFDD, and RIAD datasets, demonstrate our superior performance over state-of-the-art methods. The code and dataset will be available soon.
Abstract:This paper presents an approach to improve text embedding models through contrastive fine-tuning on small datasets augmented with expert scores. It focuses on enhancing semantic textual similarity tasks and addressing text retrieval problems. The proposed method uses soft labels derived from expert-augmented scores to fine-tune embedding models, preserving their versatility and ensuring retrieval capability is improved. The paper evaluates the method using a Q\&A dataset from an online shopping website and eight expert models. Results show improved performance over a benchmark model across multiple metrics on various retrieval tasks from the massive text embedding benchmark (MTEB). The method is cost-effective and practical for real-world applications, especially when labeled data is scarce.
Abstract:First-person hand-object interaction anticipation aims to predict the interaction process over a forthcoming period based on current scenes and prompts. This capability is crucial for embodied intelligence and human-robot collaboration. The complete interaction process involves both pre-contact interaction intention (i.e., hand motion trends and interaction hotspots) and post-contact interaction manipulation (i.e., manipulation trajectories and hand poses with contact). Existing research typically anticipates only interaction intention while neglecting manipulation, resulting in incomplete predictions and an increased likelihood of intention errors due to the lack of manipulation constraints. To address this, we propose a novel model, PEAR (Phrase-Based Hand-Object Interaction Anticipation), which jointly anticipates interaction intention and manipulation. To handle uncertainties in the interaction process, we employ a twofold approach. Firstly, we perform cross-alignment of verbs, nouns, and images to reduce the diversity of hand movement patterns and object functional attributes, thereby mitigating intention uncertainty. Secondly, we establish bidirectional constraints between intention and manipulation using dynamic integration and residual connections, ensuring consistency among elements and thus overcoming manipulation uncertainty. To rigorously evaluate the performance of the proposed model, we collect a new task-relevant dataset, EGO-HOIP, with comprehensive annotations. Extensive experimental results demonstrate the superiority of our method.
Abstract:In multivariate time-series forecasting (MTSF), extracting the temporal correlations of the input sequences is crucial. While popular Transformer-based predictive models can perform well, their quadratic computational complexity results in inefficiency and high overhead. The recently emerged Mamba, a selective state space model, has shown promising results in many fields due to its strong temporal feature extraction capabilities and linear computational complexity. However, due to the unilateral nature of Mamba, channel-independent predictive models based on Mamba cannot attend to the relationships among all variables in the manner of Transformer-based models. To address this issue, we combine fast-attention with Mamba to introduce a novel framework named FMamba for MTSF. Technically, we first extract the temporal features of the input variables through an embedding layer, then compute the dependencies among input variables via the fast-attention module. Subsequently, we use Mamba to selectively deal with the input features and further extract the temporal dependencies of the variables through the multi-layer perceptron block (MLP-block). Finally, FMamba obtains the predictive results through the projector, a linear layer. Experimental results on eight public datasets demonstrate that FMamba can achieve state-of-the-art performance while maintaining low computational overhead.
Abstract:Significant interests have recently risen in leveraging sequence-based large language models (LLMs) for drug design. However, most current applications of LLMs in drug discovery lack the ability to comprehend three-dimensional (3D) structures, thereby limiting their effectiveness in tasks that explicitly involve molecular conformations. In this study, we introduced Token-Mol, a token-only 3D drug design model. This model encodes all molecular information, including 2D and 3D structures, as well as molecular property data, into tokens, which transforms classification and regression tasks in drug discovery into probabilistic prediction problems, thereby enabling learning through a unified paradigm. Token-Mol is built on the transformer decoder architecture and trained using random causal masking techniques. Additionally, we proposed the Gaussian cross-entropy (GCE) loss function to overcome the challenges in regression tasks, significantly enhancing the capacity of LLMs to learn continuous numerical values. Through a combination of fine-tuning and reinforcement learning (RL), Token-Mol achieves performance comparable to or surpassing existing task-specific methods across various downstream tasks, including pocket-based molecular generation, conformation generation, and molecular property prediction. Compared to existing molecular pre-trained models, Token-Mol exhibits superior proficiency in handling a wider range of downstream tasks essential for drug design. Notably, our approach improves regression task accuracy by approximately 30% compared to similar token-only methods. Token-Mol overcomes the precision limitations of token-only models and has the potential to integrate seamlessly with general models such as ChatGPT, paving the way for the development of a universal artificial intelligence drug design model that facilitates rapid and high-quality drug design by experts.
Abstract:In-context learning (ICL) capabilities are becoming increasingly appealing for building general intelligence due to their sample efficiency and independence from artificial optimization skills. To enhance generalization, biological neural systems primarily inherit learning capabilities and subsequently refine their memory, acquiring diverse skills and knowledge through extensive lifelong experiences. This process gives rise to the concept of general-purpose in-context learning (GPICL). Compared to standard ICL, GPICL addresses a broader range of tasks, extends learning horizons, and starts at a lower zero-shot baseline. We introduce two lightweight but insightful benchmarks specifically crafted to train and evaluate GPICL functionalities. Each benchmark includes a vast number of tasks characterized by significant task variance and minimal transferable knowledge among tasks, facilitating lifelong in-context learning through continuous generation and interaction. These features pose significant challenges for models that rely on context or interactions to improve their proficiency, including language models, decision models, and world models. Our experiments reveal that parameter scale alone may not be crucial for ICL or GPICL, suggesting alternative approaches such as increasing the scale of contexts and memory states.
Abstract:Interaction intention anticipation aims to jointly predict future hand trajectories and interaction hotspots. Existing research often treated trajectory forecasting and interaction hotspots prediction as separate tasks or solely considered the impact of trajectories on interaction hotspots, which led to the accumulation of prediction errors over time. However, a deeper inherent connection exists between hand trajectories and interaction hotspots, which allows for continuous mutual correction between them. Building upon this relationship, a novel Bidirectional prOgressive Transformer (BOT), which introduces a Bidirectional Progressive mechanism into the anticipation of interaction intention is established. Initially, BOT maximizes the utilization of spatial information from the last observation frame through the Spatial-Temporal Reconstruction Module, mitigating conflicts arising from changes of view in first-person videos. Subsequently, based on two independent prediction branches, a Bidirectional Progressive Enhancement Module is introduced to mutually improve the prediction of hand trajectories and interaction hotspots over time to minimize error accumulation. Finally, acknowledging the intrinsic randomness in human natural behavior, we employ a Trajectory Stochastic Unit and a C-VAE to introduce appropriate uncertainty to trajectories and interaction hotspots, respectively. Our method achieves state-of-the-art results on three benchmark datasets Epic-Kitchens-100, EGO4D, and EGTEA Gaze+, demonstrating superior in complex scenarios.