NVIDIA Corporation
Abstract:The increasing complexity of modern software systems necessitates robust autonomic self-management capabilities. While Large Language Models (LLMs) demonstrate potential in this domain, they often face challenges in adapting their general knowledge to specific service contexts. To address this limitation, we propose ServiceOdyssey, a self-learning agent system that autonomously manages microservices without requiring prior knowledge of service-specific configurations. By leveraging curriculum learning principles and iterative exploration, ServiceOdyssey progressively develops a deep understanding of operational environments, reducing dependence on human input or static documentation. A prototype built with the Sock Shop microservice demonstrates the potential of this approach for autonomic microservice management.
Abstract:The advancement of large language models has intensified the need to modernize enterprise applications and migrate legacy systems to secure, versatile languages. However, existing code translation benchmarks primarily focus on individual functions, overlooking the complexities involved in translating entire repositories, such as maintaining inter-module coherence and managing dependencies. While some recent repository-level translation benchmarks attempt to address these challenges, they still face limitations, including poor maintainability and overly coarse evaluation granularity, which make them less developer-friendly. We introduce Skeleton-Guided-Translation, a framework for repository-level Java to C# code translation with fine-grained quality evaluation. It uses a two-step process: first translating the repository's structural "skeletons", then translating the full repository guided by these skeletons. Building on this, we present TRANSREPO-BENCH, a benchmark of high quality open-source Java repositories and their corresponding C# skeletons, including matching unit tests and build configurations. Our unit tests are fixed and can be applied across multiple or incremental translations without manual adjustments, enhancing automation and scalability in evaluations. Additionally, we develop fine-grained evaluation metrics that assess translation quality at the individual test case level, addressing traditional binary metrics' inability to distinguish when build failures cause all tests to fail. Evaluations using TRANSREPO-BENCH highlight key challenges and advance more accurate repository level code translation.
Abstract:Despite recent progress achieved by code large language models (LLMs), their remarkable abilities are largely dependent on fine-tuning on the high-quality data, posing challenges for data collection and annotation. To address this, current methods often design various data flywheels to gather complex code instructions, enabling models to handle more intricate tasks. However, these approaches typically rely on off-the-shelf datasets and data augmentation from the limited pool of proprietary LLMs (e.g., Claude, GPT4, and so on), which limits the diversity of the constructed data and makes it prone to systemic biases. In this paper, we propose WarriorCoder which learns from expert battles to address these limitations. Specifically, we create an arena for current expert code LLMs, where each model challenges and responds to others' challenges, with evaluations conducted by uninvolved judge models. This competitive framework generates novel training data constructed from scratch, harnessing the strengths of all participants. Experimental results demonstrate that WarriorCoder achieves competitive performance compared to previous methods, even without relying on proprietary LLMs.
Abstract:As AI continues to advance, there is a growing demand for systems that go beyond language-based assistance and move toward intelligent agents capable of performing real-world actions. This evolution requires the transition from traditional Large Language Models (LLMs), which excel at generating textual responses, to Large Action Models (LAMs), designed for action generation and execution within dynamic environments. Enabled by agent systems, LAMs hold the potential to transform AI from passive language understanding to active task completion, marking a significant milestone in the progression toward artificial general intelligence. In this paper, we present a comprehensive framework for developing LAMs, offering a systematic approach to their creation, from inception to deployment. We begin with an overview of LAMs, highlighting their unique characteristics and delineating their differences from LLMs. Using a Windows OS-based agent as a case study, we provide a detailed, step-by-step guide on the key stages of LAM development, including data collection, model training, environment integration, grounding, and evaluation. This generalizable workflow can serve as a blueprint for creating functional LAMs in various application domains. We conclude by identifying the current limitations of LAMs and discussing directions for future research and industrial deployment, emphasizing the challenges and opportunities that lie ahead in realizing the full potential of LAMs in real-world applications. The code for the data collection process utilized in this paper is publicly available at: https://github.com/microsoft/UFO/tree/main/dataflow, and comprehensive documentation can be found at https://microsoft.github.io/UFO/dataflow/overview/.
Abstract:Reinforcement Learning from Human Feedback (RLHF) is a crucial technique for aligning language models with human preferences, playing a pivotal role in the success of conversational models like GPT-4, ChatGPT, and Llama 2. A core challenge in employing RLHF lies in training a reliable reward model (RM), which relies on high-quality labels typically provided by human experts or advanced AI system. These methods can be costly and may introduce biases that affect the language model's responses. As language models improve, human input may become less effective in further enhancing their performance. In this paper, we propose Self-Evolved Reward Learning (SER), a novel approach where the RM generates additional training data to iteratively improve itself. We conducted extensive experiments on multiple datasets such as HH-RLHF and UltraFeedback, using models like Mistral and Llama 3, and compare SER against various baselines. Our results demonstrate that even with limited human-annotated data, learning from self-feedback can robustly enhance RM performance, thereby boosting the capabilities of large language models (LLMs).
Abstract:Query generation is a critical task for web search engines (e.g. Google, Bing) and recommendation systems. Recently, state-of-the-art query generation methods leverage Large Language Models (LLMs) for their strong capabilities in context understanding and text generation. However, they still face challenges in generating high-quality queries in terms of inferring user intent based on their web search interaction history. In this paper, we propose Token-level Proximal Policy Optimization (TPPO), a noval approach designed to empower LLMs perform better in query generation through fine-tuning. TPPO is based on the Reinforcement Learning from AI Feedback (RLAIF) paradigm, consisting of a token-level reward model and a token-level proximal policy optimization module to address the sparse reward challenge in traditional RLAIF frameworks. To evaluate the effectiveness and robustness of TPPO, we conducted experiments on both open-source dataset and an industrial dataset that was collected from a globally-used search engine. The experimental results demonstrate that TPPO significantly improves the performance of query generation for LLMs and outperforms its existing competitors.
Abstract:Large language model (LLM)-based AI delegates are increasingly utilized to act on behalf of users, assisting them with a wide range of tasks through conversational interfaces. Despite their advantages, concerns arise regarding the potential risk of privacy leaks, particularly in scenarios involving social interactions. While existing research has focused on protecting privacy by limiting the access of AI delegates to sensitive user information, many social scenarios require disclosing private details to achieve desired outcomes, necessitating a balance between privacy protection and disclosure. To address this challenge, we conduct a pilot study to investigate user preferences for AI delegates across various social relations and task scenarios, and then propose a novel AI delegate system that enables privacy-conscious self-disclosure. Our user study demonstrates that the proposed AI delegate strategically protects privacy, pioneering its use in diverse and dynamic social interactions.
Abstract:Multimodal large language models (MLLMs) have enabled LLM-based agents to directly interact with application user interfaces (UIs), enhancing agents' performance in complex tasks. However, these agents often suffer from high latency and low reliability due to the extensive sequential UI interactions. To address this issue, we propose AXIS, a novel LLM-based agents framework prioritize actions through application programming interfaces (APIs) over UI actions. This framework also facilitates the creation and expansion of APIs through automated exploration of applications. Our experiments on Office Word demonstrate that AXIS reduces task completion time by 65%-70% and cognitive workload by 38%-53%, while maintaining accuracy of 97%-98% compare to humans. Our work contributes to a new human-agent-computer interaction (HACI) framework and a fresh UI design principle for application providers in the era of LLMs. It also explores the possibility of turning every applications into agents, paving the way towards an agent-centric operating system (Agent OS).
Abstract:Retrieval-augmented generation (RAG) methods encounter difficulties when addressing complex questions like multi-hop queries. While iterative retrieval methods improve performance by gathering additional information, current approaches often rely on multiple calls of large language models (LLMs). In this paper, we introduce EfficientRAG, an efficient retriever for multi-hop question answering. EfficientRAG iteratively generates new queries without the need for LLM calls at each iteration and filters out irrelevant information. Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.
Abstract:The Vision of Autonomic Computing (ACV), proposed over two decades ago, envisions computing systems that self-manage akin to biological organisms, adapting seamlessly to changing environments. Despite decades of research, achieving ACV remains challenging due to the dynamic and complex nature of modern computing systems. Recent advancements in Large Language Models (LLMs) offer promising solutions to these challenges by leveraging their extensive knowledge, language understanding, and task automation capabilities. This paper explores the feasibility of realizing ACV through an LLM-based multi-agent framework for microservice management. We introduce a five-level taxonomy for autonomous service maintenance and present an online evaluation benchmark based on the Sock Shop microservice demo project to assess our framework's performance. Our findings demonstrate significant progress towards achieving Level 3 autonomy, highlighting the effectiveness of LLMs in detecting and resolving issues within microservice architectures. This study contributes to advancing autonomic computing by pioneering the integration of LLMs into microservice management frameworks, paving the way for more adaptive and self-managing computing systems. The code will be made available at https://aka.ms/ACV-LLM.