Abstract:As AI continues to advance, there is a growing demand for systems that go beyond language-based assistance and move toward intelligent agents capable of performing real-world actions. This evolution requires the transition from traditional Large Language Models (LLMs), which excel at generating textual responses, to Large Action Models (LAMs), designed for action generation and execution within dynamic environments. Enabled by agent systems, LAMs hold the potential to transform AI from passive language understanding to active task completion, marking a significant milestone in the progression toward artificial general intelligence. In this paper, we present a comprehensive framework for developing LAMs, offering a systematic approach to their creation, from inception to deployment. We begin with an overview of LAMs, highlighting their unique characteristics and delineating their differences from LLMs. Using a Windows OS-based agent as a case study, we provide a detailed, step-by-step guide on the key stages of LAM development, including data collection, model training, environment integration, grounding, and evaluation. This generalizable workflow can serve as a blueprint for creating functional LAMs in various application domains. We conclude by identifying the current limitations of LAMs and discussing directions for future research and industrial deployment, emphasizing the challenges and opportunities that lie ahead in realizing the full potential of LAMs in real-world applications. The code for the data collection process utilized in this paper is publicly available at: https://github.com/microsoft/UFO/tree/main/dataflow, and comprehensive documentation can be found at https://microsoft.github.io/UFO/dataflow/overview/.
Abstract:Learning new programming skills requires tailored guidance. With the emergence of advanced Natural Language Generation models like the ChatGPT API, there is now a possibility of creating a convenient and personalized tutoring system with AI for computer science education. This paper presents GPTutor, a ChatGPT-powered programming tool, which is a Visual Studio Code extension using the ChatGPT API to provide programming code explanations. By integrating Visual Studio Code API, GPTutor can comprehensively analyze the provided code by referencing the relevant source codes. As a result, GPTutor can use designed prompts to explain the selected code with a pop-up message. GPTutor is now published at the Visual Studio Code Extension Marketplace, and its source code is openly accessible on GitHub. Preliminary evaluation indicates that GPTutor delivers the most concise and accurate explanations compared to vanilla ChatGPT and GitHub Copilot. Moreover, the feedback from students and teachers indicated that GPTutor is user-friendly and can explain given codes satisfactorily. Finally, we discuss possible future research directions for GPTutor. This includes enhancing its performance and personalization via further prompt programming, as well as evaluating the effectiveness of GPTutor with real users.