Sherman
Abstract:Cell-free massive multiple-input-multiple-output (CF-mMIMO) is regarded as one of the promising technologies for next-generation wireless networks. However, due to its distributed architecture, geographically separated access points (APs) jointly serve a large number of user-equipments (UEs), there will inevitably be a discrepancies in the arrival time of transmitted signals. In this paper, we investigate millimeter-wave (mmWave) CF-mMIMO orthogonal frequency division multiplexing (OFDM) systems with asynchronous reception in a wide area coverage scenario, where asynchronous timing offsets may extend far beyond the cyclic prefix (CP) range. A comprehensive asynchronous beam-domain signal transmission model is presented for mmWave CF-mMIMO-OFDM systems in both downlink and uplink, incorporating phase offset, inter-carrier interference (ICI) and inter-symbol interference (ISI). To address the issue of asynchronous reception, we propose a novel per-beam timing advance (PBTA) hybrid precoding architecture and analyze the spectral efficiency (SE) in the beam domain for downlink and uplink asynchronous receptions. Both scalable centralized and distributed implementations are taken into account, and the asynchronous delay phase is utilized to design precoding/combining vectors. Furthermore, we formulate the sum rate maximization problem and develop two low-complexity joint beam selection and UE association algorithms considering the impact of asynchronous timing offset exceeding the CP range. Simulation results demonstrate that the performance will be severely limited by ICI and ISI, and our proposed PBTA hybrid precoding architecture effectively mitigates asynchronous interference compared to the nearest AAU/UE-based timing-advance scheme. Additionally, numerical results show that our proposed low-complexity joint beam selection and UE association algorithms achieve superior SE performance.
Abstract:Recent works show that sensitive user data can be reconstructed from gradient updates, breaking the key privacy promise of federated learning. While success was demonstrated primarily on image data, these methods do not directly transfer to other domains, such as spatiotemporal data. To understand privacy risks in spatiotemporal federated learning, we first propose Spatiotemporal Gradient Inversion Attack (ST-GIA), a gradient attack algorithm tailored to spatiotemporal data that successfully reconstructs the original location from gradients. Furthermore, the absence of priors in attacks on spatiotemporal data has hindered the accurate reconstruction of real client data. To address this limitation, we propose ST-GIA+, which utilizes an auxiliary language model to guide the search for potential locations, thereby successfully reconstructing the original data from gradients. In addition, we design an adaptive defense strategy to mitigate gradient inversion attacks in spatiotemporal federated learning. By dynamically adjusting the perturbation levels, we can offer tailored protection for varying rounds of training data, thereby achieving a better trade-off between privacy and utility than current state-of-the-art methods. Through intensive experimental analysis on three real-world datasets, we reveal that the proposed defense strategy can well preserve the utility of spatiotemporal federated learning with effective security protection.
Abstract:Scene reconstruction from casually captured videos has wide applications in real-world scenarios. With recent advancements in differentiable rendering techniques, several methods have attempted to simultaneously optimize scene representations (NeRF or 3DGS) and camera poses. Despite recent progress, existing methods relying on traditional camera input tend to fail in high-speed (or equivalently low-frame-rate) scenarios. Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution, providing valuable scene and motion information in blind inter-frame intervals. In this paper, we introduce the event camera to aid scene construction from a casually captured video for the first time, and propose Event-Aided Free-Trajectory 3DGS, called EF-3DGS, which seamlessly integrates the advantages of event cameras into 3DGS through three key components. First, we leverage the Event Generation Model (EGM) to fuse events and frames, supervising the rendered views observed by the event stream. Second, we adopt the Contrast Maximization (CMax) framework in a piece-wise manner to extract motion information by maximizing the contrast of the Image of Warped Events (IWE), thereby calibrating the estimated poses. Besides, based on the Linear Event Generation Model (LEGM), the brightness information encoded in the IWE is also utilized to constrain the 3DGS in the gradient domain. Third, to mitigate the absence of color information of events, we introduce photometric bundle adjustment (PBA) to ensure view consistency across events and frames.We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS. Our project page is https://lbh666.github.io/ef-3dgs/.
Abstract:Federated Learning (FL) is a privacy-preserving approach that allows servers to aggregate distributed models transmitted from local clients rather than training on user data. More recently, FL has been applied to Speech Emotion Recognition (SER) for secure human-computer interaction applications. Recent research has found that FL is still vulnerable to inference attacks. To this end, this paper focuses on investigating the security of FL for SER concerning property inference attacks. We propose a novel method to protect the property information in speech data by decomposing various properties in the sound and adding perturbations to these properties. Our experiments show that the proposed method offers better privacy-utility trade-offs than existing methods. The trade-offs enable more effective attack prevention while maintaining similar FL utility levels. This work can guide future work on privacy protection methods in speech processing.
Abstract:Recent advancements in multi-modal large language models have propelled the development of joint probabilistic models capable of both image understanding and generation. However, we have identified that recent methods inevitably suffer from loss of image information during understanding task, due to either image discretization or diffusion denoising steps. To address this issue, we propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework. Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss. Differing from diffusion-based approaches, we disentangle the diffusion process from auto-regressive backbone model by employing a light-weight diffusion head on top each auto-regressed image patch embedding. In this way, when the model transits from image generation to understanding through text generation, the backbone model's hidden representation of the image is not limited to the last denoising step. To successfully train our method, we also propose a theoretically proven technique that addresses the numerical stability issue and a training strategy that balances the generation and understanding task goals. Through extensive evaluations on 18 image understanding benchmarks, MMAR demonstrates much more superior performance than other joint multi-modal models, matching the method that employs pretrained CLIP vision encoder, meanwhile being able to generate high quality images at the same time. We also showed that our method is scalable with larger data and model size.
Abstract:Perceiving potential ``action possibilities'' (\ie, affordance) regions of images and learning interactive functionalities of objects from human demonstration is a challenging task due to the diversity of human-object interactions. Prevailing affordance learning algorithms often adopt the label assignment paradigm and presume that there is a unique relationship between functional region and affordance label, yielding poor performance when adapting to unseen environments with large appearance variations. In this paper, we propose to leverage interactive affinity for affordance learning, \ie extracting interactive affinity from human-object interaction and transferring it to non-interactive objects. Interactive affinity, which represents the contacts between different parts of the human body and local regions of the target object, can provide inherent cues of interconnectivity between humans and objects, thereby reducing the ambiguity of the perceived action possibilities. To this end, we propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues to excavate interactive affinity from human-object interactions jointly. Besides, a contact-driven affordance learning (CAL) dataset is constructed by collecting and labeling over 55,047 images. Experimental results demonstrate that our method outperforms the representative models regarding objective metrics and visual quality. Project: \href{https://github.com/lhc1224/VCR-Net}{github.com/lhc1224/VCR-Net}.
Abstract:Federated Domain Adaptation (FDA) is a Federated Learning (FL) scenario where models are trained across multiple clients with unique data domains but a shared category space, without transmitting private data. The primary challenge in FDA is data heterogeneity, which causes significant divergences in gradient updates when using conventional averaging-based aggregation methods, reducing the efficacy of the global model. This further undermines both in-domain and out-of-domain performance (within the same federated system but outside the local client). To address this, we propose a novel framework called \textbf{M}ulti-domain \textbf{P}rototype-based \textbf{F}ederated Fine-\textbf{T}uning (MPFT). MPFT fine-tunes a pre-trained model using multi-domain prototypes, i.e., pretrained representations enriched with domain-specific information from category-specific local data. This enables supervised learning on the server to derive a globally optimized adapter that is subsequently distributed to local clients, without the intrusion of data privacy. Empirical results show that MPFT significantly improves both in-domain and out-of-domain accuracy over conventional methods, enhancing knowledge preservation and adaptation in FDA. Notably, MPFT achieves convergence within a single communication round, greatly reducing computation and communication costs. To ensure privacy, MPFT applies differential privacy to protect the prototypes. Additionally, we develop a prototype-based feature space hijacking attack to evaluate robustness, confirming that raw data samples remain unrecoverable even after extensive training epochs. The complete implementation of MPFL is available at \url{https://anonymous.4open.science/r/DomainFL/}.
Abstract:Neural Radiance Fields (NeRF) are widely used for novel-view synthesis and have been adapted for 3D Object Detection (3DOD), offering a promising approach to 3DOD through view-synthesis representation. However, NeRF faces inherent limitations: (i) limited representational capacity for 3DOD due to its implicit nature, and (ii) slow rendering speeds. Recently, 3D Gaussian Splatting (3DGS) has emerged as an explicit 3D representation that addresses these limitations. Inspired by these advantages, this paper introduces 3DGS into 3DOD for the first time, identifying two main challenges: (i) Ambiguous spatial distribution of Gaussian blobs: 3DGS primarily relies on 2D pixel-level supervision, resulting in unclear 3D spatial distribution of Gaussian blobs and poor differentiation between objects and background, which hinders 3DOD; (ii) Excessive background blobs: 2D images often include numerous background pixels, leading to densely reconstructed 3DGS with many noisy Gaussian blobs representing the background, negatively affecting detection. To tackle the challenge (i), we leverage the fact that 3DGS reconstruction is derived from 2D images, and propose an elegant and efficient solution by incorporating 2D Boundary Guidance to significantly enhance the spatial distribution of Gaussian blobs, resulting in clearer differentiation between objects and their background. To address the challenge (ii), we propose a Box-Focused Sampling strategy using 2D boxes to generate object probability distribution in 3D spaces, allowing effective probabilistic sampling in 3D to retain more object blobs and reduce noisy background blobs. Benefiting from our designs, our 3DGS-DET significantly outperforms the SOTA NeRF-based method, NeRF-Det, achieving improvements of +6.6 on mAP@0.25 and +8.1 on mAP@0.5 for the ScanNet dataset, and impressive +31.5 on mAP@0.25 for the ARKITScenes dataset.
Abstract:Recent advancements in industrial anomaly detection have been hindered by the lack of realistic datasets that accurately represent real-world conditions. Existing algorithms are often developed and evaluated using idealized datasets, which deviate significantly from real-life scenarios characterized by environmental noise and data corruption such as fluctuating lighting conditions, variable object poses, and unstable camera positions. To address this gap, we introduce the Realistic Anomaly Detection (RAD) dataset, the first multi-view RGB-based anomaly detection dataset specifically collected using a real robot arm, providing unique and realistic data scenarios. RAD comprises 4765 images across 13 categories and 4 defect types, collected from more than 50 viewpoints, providing a comprehensive and realistic benchmark. This multi-viewpoint setup mirrors real-world conditions where anomalies may not be detectable from every perspective. Moreover, by sampling varying numbers of views, the algorithm's performance can be comprehensively evaluated across different viewpoints. This approach enhances the thoroughness of performance assessment and helps improve the algorithm's robustness. Besides, to support 3D multi-view reconstruction algorithms, we propose a data augmentation method to improve the accuracy of pose estimation and facilitate the reconstruction of 3D point clouds. We systematically evaluate state-of-the-art RGB-based and point cloud-based models using RAD, identifying limitations and future research directions. The code and dataset could found at https://github.com/kaichen-z/RAD
Abstract:Zero-shot anomaly detection (ZSAD) recognizes and localizes anomalies in previously unseen objects by establishing feature mapping between textual prompts and inspection images, demonstrating excellent research value in flexible industrial manufacturing. However, existing ZSAD methods are limited by closed-world settings, struggling to unseen defects with predefined prompts. Recently, adapting Multimodal Large Language Models (MLLMs) for Industrial Anomaly Detection (IAD) presents a viable solution. Unlike fixed-prompt methods, MLLMs exhibit a generative paradigm with open-ended text interpretation, enabling more adaptive anomaly analysis. However, this adaption faces inherent challenges as anomalies often manifest in fine-grained regions and exhibit minimal visual discrepancies from normal samples. To address these challenges, we propose a novel framework VMAD (Visual-enhanced MLLM Anomaly Detection) that enhances MLLM with visual-based IAD knowledge and fine-grained perception, simultaneously providing precise detection and comprehensive analysis of anomalies. Specifically, we design a Defect-Sensitive Structure Learning scheme that transfers patch-similarities cues from visual branch to our MLLM for improved anomaly discrimination. Besides, we introduce a novel visual projector, Locality-enhanced Token Compression, which mines multi-level features in local contexts to enhance fine-grained detection. Furthermore, we introduce the Real Industrial Anomaly Detection (RIAD), a comprehensive IAD dataset with detailed anomaly descriptions and analyses, offering a valuable resource for MLLM-based IAD development. Extensive experiments on zero-shot benchmarks, including MVTec-AD, Visa, WFDD, and RIAD datasets, demonstrate our superior performance over state-of-the-art methods. The code and dataset will be available soon.