Sherman
Abstract:Video colorization aims to transform grayscale videos into vivid color representations while maintaining temporal consistency and structural integrity. Existing video colorization methods often suffer from color bleeding and lack comprehensive control, particularly under complex motion or diverse semantic cues. To this end, we introduce VanGogh, a unified multimodal diffusion-based framework for video colorization. VanGogh tackles these challenges using a Dual Qformer to align and fuse features from multiple modalities, complemented by a depth-guided generation process and an optical flow loss, which help reduce color overflow. Additionally, a color injection strategy and luma channel replacement are implemented to improve generalization and mitigate flickering artifacts. Thanks to this design, users can exercise both global and local control over the generation process, resulting in higher-quality colorized videos. Extensive qualitative and quantitative evaluations, and user studies, demonstrate that VanGogh achieves superior temporal consistency and color fidelity.Project page: https://becauseimbatman0.github.io/VanGogh.
Abstract:Live animation has gained immense popularity for enhancing online engagement, yet achieving high-quality, real-time, and stable animation with diffusion models remains challenging, especially on consumer-grade GPUs. Existing methods struggle with generating long, consistent video streams efficiently, often being limited by latency issues and degraded visual quality over extended periods. In this paper, we introduce RAIN, a pipeline solution capable of animating infinite video streams in real-time with low latency using a single RTX 4090 GPU. The core idea of RAIN is to efficiently compute frame-token attention across different noise levels and long time-intervals while simultaneously denoising a significantly larger number of frame-tokens than previous stream-based methods. This design allows RAIN to generate video frames with much shorter latency and faster speed, while maintaining long-range attention over extended video streams, resulting in enhanced continuity and consistency. Consequently, a Stable Diffusion model fine-tuned with RAIN in just a few epochs can produce video streams in real-time and low latency without much compromise in quality or consistency, up to infinite long. Despite its advanced capabilities, the RAIN only introduces a few additional 1D attention blocks, imposing minimal additional burden. Experiments in benchmark datasets and generating super-long videos demonstrating that RAIN can animate characters in real-time with much better quality, accuracy, and consistency than competitors while costing less latency. All code and models will be made publicly available.
Abstract:We introduce \textbf{Gr}adient Descent with \textbf{A}daptive \textbf{M}omentum \textbf{S}caling (\textbf{Grams}), a novel optimization algorithm that decouples the direction and magnitude of parameter updates in deep learning. Unlike traditional optimizers that directly integrate momentum into updates, Grams separates the update direction, derived from current gradients, from momentum, which is used solely for adaptive magnitude scaling. This approach enables Grams to achieve improved loss descent compared to state-of-the-art cautious and momentum-based optimizers. We establish a global convergence guarantee for Grams and validate its effectiveness through extensive empirical evaluations. The results demonstrate Grams' superior performance, including faster convergence and better generalization, compared to widely-used optimizers such as Adam, Lion, and their cautious variants. Our results highlight Grams' potential as a transformative approach for efficient optimization in large-scale machine learning.
Abstract:Fine-tuning has emerged as a critical process in leveraging Large Language Models (LLMs) for specific downstream tasks, enabling these models to achieve state-of-the-art performance across various domains. However, the fine-tuning process often involves sensitive datasets, introducing privacy risks that exploit the unique characteristics of this stage. In this paper, we provide a comprehensive survey of privacy challenges associated with fine-tuning LLMs, highlighting vulnerabilities to various privacy attacks, including membership inference, data extraction, and backdoor attacks. We further review defense mechanisms designed to mitigate privacy risks in the fine-tuning phase, such as differential privacy, federated learning, and knowledge unlearning, discussing their effectiveness and limitations in addressing privacy risks and maintaining model utility. By identifying key gaps in existing research, we highlight challenges and propose directions to advance the development of privacy-preserving methods for fine-tuning LLMs, promoting their responsible use in diverse applications.
Abstract:Generating detailed captions comprehending text-rich visual content in images has received growing attention for Large Vision-Language Models (LVLMs). However, few studies have developed benchmarks specifically tailored for detailed captions to measure their accuracy and comprehensiveness. In this paper, we introduce a detailed caption benchmark, termed as CompreCap, to evaluate the visual context from a directed scene graph view. Concretely, we first manually segment the image into semantically meaningful regions (i.e., semantic segmentation mask) according to common-object vocabulary, while also distinguishing attributes of objects within all those regions. Then directional relation labels of these objects are annotated to compose a directed scene graph that can well encode rich compositional information of the image. Based on our directed scene graph, we develop a pipeline to assess the generated detailed captions from LVLMs on multiple levels, including the object-level coverage, the accuracy of attribute descriptions, the score of key relationships, etc. Experimental results on the CompreCap dataset confirm that our evaluation method aligns closely with human evaluation scores across LVLMs.
Abstract:Tracking Any Point (TAP) plays a crucial role in motion analysis. Video-based approaches rely on iterative local matching for tracking, but they assume linear motion during the blind time between frames, which leads to target point loss under large displacements or nonlinear motion. The high temporal resolution and motion blur-free characteristics of event cameras provide continuous, fine-grained motion information, capturing subtle variations with microsecond precision. This paper presents an event-based framework for tracking any point, which tackles the challenges posed by spatial sparsity and motion sensitivity in events through two tailored modules. Specifically, to resolve ambiguities caused by event sparsity, a motion-guidance module incorporates kinematic features into the local matching process. Additionally, a variable motion aware module is integrated to ensure temporally consistent responses that are insensitive to varying velocities, thereby enhancing matching precision. To validate the effectiveness of the approach, an event dataset for tracking any point is constructed by simulation, and is applied in experiments together with two real-world datasets. The experimental results show that the proposed method outperforms existing SOTA methods. Moreover, it achieves 150\% faster processing with competitive model parameters.
Abstract:Open-Vocabulary 3D object affordance grounding aims to anticipate ``action possibilities'' regions on 3D objects with arbitrary instructions, which is crucial for robots to generically perceive real scenarios and respond to operational changes. Existing methods focus on combining images or languages that depict interactions with 3D geometries to introduce external interaction priors. However, they are still vulnerable to a limited semantic space by failing to leverage implied invariant geometries and potential interaction intentions. Normally, humans address complex tasks through multi-step reasoning and respond to diverse situations by leveraging associative and analogical thinking. In light of this, we propose GREAT (GeometRy-intEntion collAboraTive inference) for Open-Vocabulary 3D Object Affordance Grounding, a novel framework that mines the object invariant geometry attributes and performs analogically reason in potential interaction scenarios to form affordance knowledge, fully combining the knowledge with both geometries and visual contents to ground 3D object affordance. Besides, we introduce the Point Image Affordance Dataset v2 (PIADv2), the largest 3D object affordance dataset at present to support the task. Extensive experiments demonstrate the effectiveness and superiority of GREAT. Code and dataset are available at project.
Abstract:Intelligent agents accomplish different tasks by utilizing various objects based on their affordance, but how to select appropriate objects according to task context is not well-explored. Current studies treat objects within the affordance category as equivalent, ignoring that object affordances vary in priority with different task contexts, hindering accurate decision-making in complex environments. To enable agents to develop a deeper understanding of the objects required to perform tasks, we propose to leverage task context for object affordance ranking, i.e., given image of a complex scene and the textual description of the affordance and task context, revealing task-object relationships and clarifying the priority rank of detected objects. To this end, we propose a novel Context-embed Group Ranking Framework with task relation mining module and graph group update module to deeply integrate task context and perform global relative relationship transmission. Due to the lack of such data, we construct the first large-scale task-oriented affordance ranking dataset with 25 common tasks, over 50k images and more than 661k objects. Experimental results demonstrate the feasibility of the task context based affordance learning paradigm and the superiority of our model over state-of-the-art models in the fields of saliency ranking and multimodal object detection. The source code and dataset will be made available to the public.
Abstract:Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting. Although substantial progress has been made in time series forecasting, most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices (e.g., sensors, wearables) to a central cloud server. However, this paradigm has overloaded communication networks and raised privacy concerns. Federated learning, a popular privacy-preserving technique, enables collaborative model training across distributed data sources. However, directly applying federated learning to time series forecasting often yields suboptimal results, as time series data generated by different devices are inherently heterogeneous. In this paper, we propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers. Specifically, Fed-TREND generates two types of synthetic data. The first type of synthetic data captures the representative distribution information from clients' uploaded model updates and enhances clients' local training consensus. The second kind of synthetic data extracts long-term influence insights from global model update trajectories and is used to refine the global model after aggregation. Fed-TREND is compatible with most time series forecasting models and can be seamlessly integrated into existing federated learning frameworks to improve prediction performance. Extensive experiments on eight datasets, using several federated learning baselines and four popular time series forecasting models, demonstrate the effectiveness and generalizability of Fed-TREND.
Abstract:Real-world image super-resolution (Real SR) aims to generate high-fidelity, detail-rich high-resolution (HR) images from low-resolution (LR) counterparts. Existing Real SR methods primarily focus on generating details from the LR RGB domain, often leading to a lack of richness or fidelity in fine details. In this paper, we pioneer the use of details hidden in RAW data to complement existing RGB-only methods, yielding superior outputs. We argue that key image processing steps in Image Signal Processing, such as denoising and demosaicing, inherently result in the loss of fine details in LR images, making LR RAW a valuable information source. To validate this, we present RealSR-RAW, a comprehensive dataset comprising over 10,000 pairs with LR and HR RGB images, along with corresponding LR RAW, captured across multiple smartphones under varying focal lengths and diverse scenes. Additionally, we propose a novel, general RAW adapter to efficiently integrate LR RAW data into existing CNNs, Transformers, and Diffusion-based Real SR models by suppressing the noise contained in LR RAW and aligning its distribution. Extensive experiments demonstrate that incorporating RAW data significantly enhances detail recovery and improves Real SR performance across ten evaluation metrics, including both fidelity and perception-oriented metrics. Our findings open a new direction for the Real SR task, with the dataset and code will be made available to support future research.