Abstract:We introduce MVGenMaster, a multi-view diffusion model enhanced with 3D priors to address versatile Novel View Synthesis (NVS) tasks. MVGenMaster leverages 3D priors that are warped using metric depth and camera poses, significantly enhancing both generalization and 3D consistency in NVS. Our model features a simple yet effective pipeline that can generate up to 100 novel views conditioned on variable reference views and camera poses with a single forward process. Additionally, we have developed a comprehensive large-scale multi-view image dataset called MvD-1M, comprising up to 1.6 million scenes, equipped with well-aligned metric depth to train MVGenMaster. Moreover, we present several training and model modifications to strengthen the model with scaled-up datasets. Extensive evaluations across in- and out-of-domain benchmarks demonstrate the effectiveness of our proposed method and data formulation. Models and codes will be released at https://github.com/ewrfcas/MVGenMaster/.
Abstract:Learning a reward model (RM) from human preferences has been an important component in aligning large language models (LLMs). The canonical setup of learning RMs from pairwise preference data is rooted in the classic Bradley-Terry (BT) model that accepts binary feedback, i.e., the label being either Response 1 is better than Response 2, or the opposite. Such a setup inevitably discards potentially useful samples (such as "tied" between the two responses) and loses more fine-grained information (such as "slightly better"). In this paper, we propose a framework for learning RMs under ordinal feedback which generalizes the case of binary preference feedback to any arbitrary granularity. Specifically, we first identify a marginal unbiasedness condition, which generalizes the assumption of the BT model in the existing binary feedback setting. The condition validates itself via the sociological concept of the wisdom of the crowd. Under the condition, we develop a natural probability model for pairwise preference data under ordinal feedback and analyze its properties. We prove the statistical benefits of ordinal feedback in terms of reducing the Rademacher complexity compared to the case of binary feedback. The proposed learning objective and the theory also extend to hinge loss and direct policy optimization (DPO). In particular, the theoretical analysis may be of independent interest when applying to a seemingly unrelated problem of knowledge distillation to interpret the bias-variance trade-off therein. The framework also sheds light on writing guidance for human annotators. Our numerical experiments validate that fine-grained feedback leads to better reward learning for both in-distribution and out-of-distribution settings. Further experiments show that incorporating a certain proportion of samples with tied preference boosts RM learning.
Abstract:Recent research on texture synthesis for 3D shapes benefits a lot from dramatically developed 2D text-to-image diffusion models, including inpainting-based and optimization-based approaches. However, these methods ignore the modal gap between the 2D diffusion model and 3D objects, which primarily render 3D objects into 2D images and texture each image separately. In this paper, we revisit the texture synthesis and propose a Variance alignment based 3D-2D Collaborative Denoising framework, dubbed VCD-Texture, to address these issues. Formally, we first unify both 2D and 3D latent feature learning in diffusion self-attention modules with re-projected 3D attention receptive fields. Subsequently, the denoised multi-view 2D latent features are aggregated into 3D space and then rasterized back to formulate more consistent 2D predictions. However, the rasterization process suffers from an intractable variance bias, which is theoretically addressed by the proposed variance alignment, achieving high-fidelity texture synthesis. Moreover, we present an inpainting refinement to further improve the details with conflicting regions. Notably, there is not a publicly available benchmark to evaluate texture synthesis, which hinders its development. Thus we construct a new evaluation set built upon three open-source 3D datasets and propose to use four metrics to thoroughly validate the texturing performance. Comprehensive experiments demonstrate that VCD-Texture achieves superior performance against other counterparts.
Abstract:Predicting simple function classes has been widely used as a testbed for developing theory and understanding of the trained Transformer's in-context learning (ICL) ability. In this paper, we revisit the training of Transformers on linear regression tasks, and different from all the existing literature, we consider a bi-objective prediction task of predicting both the conditional expectation $\mathbb{E}[Y|X]$ and the conditional variance Var$(Y|X)$. This additional uncertainty quantification objective provides a handle to (i) better design out-of-distribution experiments to distinguish ICL from in-weight learning (IWL) and (ii) make a better separation between the algorithms with and without using the prior information of the training distribution. Theoretically, we show that the trained Transformer reaches near Bayes-optimum, suggesting the usage of the information of the training distribution. Our method can be extended to other cases. Specifically, with the Transformer's context window $S$, we prove a generalization bound of $\tilde{\mathcal{O}}(\sqrt{\min\{S, T\}/(n T)})$ on $n$ tasks with sequences of length $T$, providing sharper analysis compared to previous results of $\tilde{\mathcal{O}}(\sqrt{1/n})$. Empirically, we illustrate that while the trained Transformer behaves as the Bayes-optimal solution as a natural consequence of supervised training in distribution, it does not necessarily perform a Bayesian inference when facing task shifts, in contrast to the \textit{equivalence} between these two proposed in many existing literature. We also demonstrate the trained Transformer's ICL ability over covariates shift and prompt-length shift and interpret them as a generalization over a meta distribution.
Abstract:In this paper, we consider the supervised pretrained transformer for a class of sequential decision-making problems. The class of considered problems is a subset of the general formulation of reinforcement learning in that there is no transition probability matrix, and the class of problems covers bandits, dynamic pricing, and newsvendor problems as special cases. Such a structure enables the use of optimal actions/decisions in the pretraining phase, and the usage also provides new insights for the training and generalization of the pretrained transformer. We first note that the training of the transformer model can be viewed as a performative prediction problem, and the existing methods and theories largely ignore or cannot resolve the arisen out-of-distribution issue. We propose a natural solution that includes the transformer-generated action sequences in the training procedure, and it enjoys better properties both numerically and theoretically. The availability of the optimal actions in the considered tasks also allows us to analyze the properties of the pretrained transformer as an algorithm and explains why it may lack exploration and how this can be automatically resolved. Numerically, we categorize the advantages of the pretrained transformer over the structured algorithms such as UCB and Thompson sampling into three cases: (i) it better utilizes the prior knowledge in the pretraining data; (ii) it can elegantly handle the misspecification issue suffered by the structured algorithms; (iii) for short time horizon such as $T\le50$, it behaves more greedy and enjoys much better regret than the structured algorithms which are designed for asymptotic optimality.
Abstract:In this paper, we study the problem of watermarking large language models (LLMs). We consider the trade-off between model distortion and detection ability and formulate it as a constrained optimization problem based on the green-red algorithm of Kirchenbauer et al. (2023a). We show that the optimal solution to the optimization problem enjoys a nice analytical property which provides a better understanding and inspires the algorithm design for the watermarking process. We develop an online dual gradient ascent watermarking algorithm in light of this optimization formulation and prove its asymptotic Pareto optimality between model distortion and detection ability. Such a result guarantees an averaged increased green list probability and henceforth detection ability explicitly (in contrast to previous results). Moreover, we provide a systematic discussion on the choice of the model distortion metrics for the watermarking problem. We justify our choice of KL divergence and present issues with the existing criteria of ``distortion-free'' and perplexity. Finally, we empirically evaluate our algorithms on extensive datasets against benchmark algorithms.
Abstract:With the proliferation of spatio-textual data, Top-k KNN spatial keyword queries (TkQs), which return a list of objects based on a ranking function that evaluates both spatial and textual relevance, have found many real-life applications. Existing geo-textual indexes for TkQs use traditional retrieval models like BM25 to compute text relevance and usually exploit a simple linear function to compute spatial relevance, but its effectiveness is limited. To improve effectiveness, several deep learning models have recently been proposed, but they suffer severe efficiency issues. To the best of our knowledge, there are no efficient indexes specifically designed to accelerate the top-k search process for these deep learning models. To tackle these issues, we propose a novel technique, which Learns to Index the Spatio-Textual data for answering embedding based spatial keyword queries (called LIST). LIST is featured with two novel components. Firstly, we propose a lightweight and effective relevance model that is capable of learning both textual and spatial relevance. Secondly, we introduce a novel machine learning based Approximate Nearest Neighbor Search (ANNS) index, which utilizes a new learning-to-cluster technique to group relevant queries and objects together while separating irrelevant queries and objects. Two key challenges in building an effective and efficient index are the absence of high-quality labels and unbalanced clustering results. We develop a novel pseudo-label generation technique to address the two challenges. Experimental results show that LIST significantly outperforms state-of-the-art methods on effectiveness, with improvements up to 19.21% and 12.79% in terms of NDCG@1 and Recall@10, and is three orders of magnitude faster than the most effective baseline.
Abstract:In this work, we propose a Unified framework of Sequential Search and Recommendation (UnifiedSSR) for joint learning of user behavior history in both search and recommendation scenarios. Specifically, we consider user-interacted products in the recommendation scenario, user-interacted products and user-issued queries in the search scenario as three distinct types of user behaviors. We propose a dual-branch network to encode the pair of interacted product history and issued query history in the search scenario in parallel. This allows for cross-scenario modeling by deactivating the query branch for the recommendation scenario. Through the parameter sharing between dual branches, as well as between product branches in two scenarios, we incorporate cross-view and cross-scenario associations of user behaviors, providing a comprehensive understanding of user behavior patterns. To further enhance user behavior modeling by capturing the underlying dynamic intent, an Intent-oriented Session Modeling module is designed for inferring intent-oriented semantic sessions from the contextual information in behavior sequences. In particular, we consider self-supervised learning signals from two perspectives for intent-oriented semantic session locating, which encourage session discrimination within each behavior sequence and session alignment between dual behavior sequences. Extensive experiments on three public datasets demonstrate that UnifiedSSR consistently outperforms state-of-the-art methods for both search and recommendation.
Abstract:Inspired by the recent success of large language models (LLMs) like ChatGPT, researchers start to explore the adoption of LLMs for agile hardware design, such as generating design RTL based on natural-language instructions. However, in existing works, their target designs are all relatively simple and in a small scale, and proposed by the authors themselves, making a fair comparison among different LLM solutions challenging. In addition, many prior works only focus on the design correctness, without evaluating the design qualities of generated design RTL. In this work, we propose an open-source benchmark named RTLLM, for generating design RTL with natural language instructions. To systematically evaluate the auto-generated design RTL, we summarized three progressive goals, named syntax goal, functionality goal, and design quality goal. This benchmark can automatically provide a quantitative evaluation of any given LLM-based solution. Furthermore, we propose an easy-to-use yet surprisingly effective prompt engineering technique named self-planning, which proves to significantly boost the performance of GPT-3.5 in our proposed benchmark.
Abstract:Uncertainty sampling is a prevalent active learning algorithm that queries sequentially the annotations of data samples which the current prediction model is uncertain about. However, the usage of uncertainty sampling has been largely heuristic: (i) There is no consensus on the proper definition of "uncertainty" for a specific task under a specific loss; (ii) There is no theoretical guarantee that prescribes a standard protocol to implement the algorithm, for example, how to handle the sequentially arrived annotated data under the framework of optimization algorithms such as stochastic gradient descent. In this work, we systematically examine uncertainty sampling algorithms under both stream-based and pool-based active learning. We propose a notion of equivalent loss which depends on the used uncertainty measure and the original loss function and establish that an uncertainty sampling algorithm essentially optimizes against such an equivalent loss. The perspective verifies the properness of existing uncertainty measures from two aspects: surrogate property and loss convexity. Furthermore, we propose a new notion for designing uncertainty measures called \textit{loss as uncertainty}. The idea is to use the conditional expected loss given the features as the uncertainty measure. Such an uncertainty measure has nice analytical properties and generality to cover both classification and regression problems, which enable us to provide the first generalization bound for uncertainty sampling algorithms under both stream-based and pool-based settings, in the full generality of the underlying model and problem. Lastly, we establish connections between certain variants of the uncertainty sampling algorithms with risk-sensitive objectives and distributional robustness, which can partly explain the advantage of uncertainty sampling algorithms when the sample size is small.