Fudan University
Abstract:Decoding visual experiences from brain activity is a significant challenge. Existing fMRI-to-video methods often focus on semantic content while overlooking spatial and motion information. However, these aspects are all essential and are processed through distinct pathways in the brain. Motivated by this, we propose DecoFuse, a novel brain-inspired framework for decoding videos from fMRI signals. It first decomposes the video into three components - semantic, spatial, and motion - then decodes each component separately before fusing them to reconstruct the video. This approach not only simplifies the complex task of video decoding by decomposing it into manageable sub-tasks, but also establishes a clearer connection between learned representations and their biological counterpart, as supported by ablation studies. Further, our experiments show significant improvements over previous state-of-the-art methods, achieving 82.4% accuracy for semantic classification, 70.6% accuracy in spatial consistency, a 0.212 cosine similarity for motion prediction, and 21.9% 50-way accuracy for video generation. Additionally, neural encoding analyses for semantic and spatial information align with the two-streams hypothesis, further validating the distinct roles of the ventral and dorsal pathways. Overall, DecoFuse provides a strong and biologically plausible framework for fMRI-to-video decoding. Project page: https://chongjg.github.io/DecoFuse/.
Abstract:Open-vocabulary 3D visual grounding and reasoning aim to localize objects in a scene based on implicit language descriptions, even when they are occluded. This ability is crucial for tasks such as vision-language navigation and autonomous robotics. However, current methods struggle because they rely heavily on fine-tuning with 3D annotations and mask proposals, which limits their ability to handle diverse semantics and common knowledge required for effective reasoning. In this work, we propose ReasonGrounder, an LVLM-guided framework that uses hierarchical 3D feature Gaussian fields for adaptive grouping based on physical scale, enabling open-vocabulary 3D grounding and reasoning. ReasonGrounder interprets implicit instructions using large vision-language models (LVLM) and localizes occluded objects through 3D Gaussian splatting. By incorporating 2D segmentation masks from the SAM and multi-view CLIP embeddings, ReasonGrounder selects Gaussian groups based on object scale, enabling accurate localization through both explicit and implicit language understanding, even in novel, occluded views. We also contribute ReasoningGD, a new dataset containing over 10K scenes and 2 million annotations for evaluating open-vocabulary 3D grounding and amodal perception under occlusion. Experiments show that ReasonGrounder significantly improves 3D grounding accuracy in real-world scenarios.
Abstract:Generating emotion-specific talking head videos from audio input is an important and complex challenge for human-machine interaction. However, emotion is highly abstract concept with ambiguous boundaries, and it necessitates disentangled expression parameters to generate emotionally expressive talking head videos. In this work, we present EmoHead to synthesize talking head videos via semantic expression parameters. To predict expression parameter for arbitrary audio input, we apply an audio-expression module that can be specified by an emotion tag. This module aims to enhance correlation from audio input across various emotions. Furthermore, we leverage pre-trained hyperplane to refine facial movements by probing along the vertical direction. Finally, the refined expression parameters regularize neural radiance fields and facilitate the emotion-consistent generation of talking head videos. Experimental results demonstrate that semantic expression parameters lead to better reconstruction quality and controllability.
Abstract:Person re-identification (Re-ID) is a critical task in human-centric intelligent systems, enabling consistent identification of individuals across different camera views using multi-modal query information. Recent studies have successfully integrated LVLMs with person Re-ID, yielding promising results. However, existing LVLM-based methods face several limitations. They rely on extracting textual embeddings from fixed templates, which are used either as intermediate features for image representation or for prompt tuning in domain-specific tasks. Furthermore, they are unable to adopt the VQA inference format, significantly restricting their broader applicability. In this paper, we propose a novel, versatile, one-for-all person Re-ID framework, ChatReID. Our approach introduces a Hierarchical Progressive Tuning (HPT) strategy, which ensures fine-grained identity-level retrieval by progressively refining the model's ability to distinguish pedestrian identities. Extensive experiments demonstrate that our approach outperforms SOTA methods across ten benchmarks in four different Re-ID settings, offering enhanced flexibility and user-friendliness. ChatReID provides a scalable, practical solution for real-world person Re-ID applications, enabling effective multi-modal interaction and fine-grained identity discrimination.
Abstract:As the demand for high-resolution image processing in Large Vision-Language Models (LVLMs) grows, sub-image partitioning has become a popular approach for mitigating visual information loss associated with fixed-resolution processing. However, existing partitioning methods uniformly process sub-images, resulting in suboptimal image understanding. In this work, we reveal that the sub-images with higher semantic relevance to the entire image encapsulate richer visual information for preserving the model's visual understanding ability. Therefore, we propose the Global Semantic-guided Weight Allocator (GSWA) module, which dynamically allocates weights to sub-images based on their relative information density, emulating human visual attention mechanisms. This approach enables the model to focus on more informative regions, overcoming the limitations of uniform treatment. We integrate GSWA into the InternVL2-2B framework to create SleighVL, a lightweight yet high-performing model. Extensive experiments demonstrate that SleighVL outperforms models with comparable parameters and remains competitive with larger models. Our work provides a promising direction for more efficient and contextually aware high-resolution image processing in LVLMs, advancing multimodal system development.
Abstract:Language-guided robotic grasping is a rapidly advancing field where robots are instructed using human language to grasp specific objects. However, existing methods often depend on dense camera views and struggle to quickly update scenes, limiting their effectiveness in changeable environments. In contrast, we propose SparseGrasp, a novel open-vocabulary robotic grasping system that operates efficiently with sparse-view RGB images and handles scene updates fastly. Our system builds upon and significantly enhances existing computer vision modules in robotic learning. Specifically, SparseGrasp utilizes DUSt3R to generate a dense point cloud as the initialization for 3D Gaussian Splatting (3DGS), maintaining high fidelity even under sparse supervision. Importantly, SparseGrasp incorporates semantic awareness from recent vision foundation models. To further improve processing efficiency, we repurpose Principal Component Analysis (PCA) to compress features from 2D models. Additionally, we introduce a novel render-and-compare strategy that ensures rapid scene updates, enabling multi-turn grasping in changeable environments. Experimental results show that SparseGrasp significantly outperforms state-of-the-art methods in terms of both speed and adaptability, providing a robust solution for multi-turn grasping in changeable environment.
Abstract:Large Vision-Language Models (LVLMs) that incorporate visual models and Large Language Models (LLMs) have achieved impressive results across various cross-modal understanding and reasoning tasks. In recent years, person re-identification (ReID) has also started to explore cross-modal semantics to improve the accuracy of identity recognition. However, effectively utilizing LVLMs for ReID remains an open challenge. While LVLMs operate under a generative paradigm by predicting the next output word, ReID requires the extraction of discriminative identity features to match pedestrians across cameras. In this paper, we propose LVLM-ReID, a novel framework that harnesses the strengths of LVLMs to promote ReID. Specifically, we employ instructions to guide the LVLM in generating one pedestrian semantic token that encapsulates key appearance semantics from the person image. This token is further refined through our Semantic-Guided Interaction (SGI) module, establishing a reciprocal interaction between the semantic token and visual tokens. Ultimately, the reinforced semantic token serves as the pedestrian identity representation. Our framework integrates the semantic understanding and generation capabilities of LVLMs into end-to-end ReID training, allowing LVLMs to capture rich semantic cues from pedestrian images during both training and inference. Our method achieves competitive results on multiple benchmarks without additional image-text annotations, demonstrating the potential of LVLM-generated semantics to advance person ReID and offering a promising direction for future research.
Abstract:We introduce MVGenMaster, a multi-view diffusion model enhanced with 3D priors to address versatile Novel View Synthesis (NVS) tasks. MVGenMaster leverages 3D priors that are warped using metric depth and camera poses, significantly enhancing both generalization and 3D consistency in NVS. Our model features a simple yet effective pipeline that can generate up to 100 novel views conditioned on variable reference views and camera poses with a single forward process. Additionally, we have developed a comprehensive large-scale multi-view image dataset called MvD-1M, comprising up to 1.6 million scenes, equipped with well-aligned metric depth to train MVGenMaster. Moreover, we present several training and model modifications to strengthen the model with scaled-up datasets. Extensive evaluations across in- and out-of-domain benchmarks demonstrate the effectiveness of our proposed method and data formulation. Models and codes will be released at https://github.com/ewrfcas/MVGenMaster/.
Abstract:Given the complexities inherent in visual scenes, such as object occlusion, a comprehensive understanding often requires observation from multiple viewpoints. Existing multi-viewpoint object-centric learning methods typically employ random or sequential viewpoint selection strategies. While applicable across various scenes, these strategies may not always be ideal, as certain scenes could benefit more from specific viewpoints. To address this limitation, we propose a novel active viewpoint selection strategy. This strategy predicts images from unknown viewpoints based on information from observation images for each scene. It then compares the object-centric representations extracted from both viewpoints and selects the unknown viewpoint with the largest disparity, indicating the greatest gain in information, as the next observation viewpoint. Through experiments on various datasets, we demonstrate the effectiveness of our active viewpoint selection strategy, significantly enhancing segmentation and reconstruction performance compared to random viewpoint selection. Moreover, our method can accurately predict images from unknown viewpoints.
Abstract:Humans can discern scene-independent features of objects across various environments, allowing them to swiftly identify objects amidst changing factors such as lighting, perspective, size, and position and imagine the complete images of the same object in diverse settings. Existing object-centric learning methods only extract scene-dependent object-centric representations, lacking the ability to identify the same object across scenes as humans. Moreover, some existing methods discard the individual object generation capabilities to handle complex scenes. This paper introduces a novel object-centric learning method to empower AI systems with human-like capabilities to identify objects across scenes and generate diverse scenes containing specific objects by learning a set of global object-centric representations. To learn the global object-centric representations that encapsulate globally invariant attributes of objects (i.e., the complete appearance and shape), this paper designs a Disentangled Slot Attention module to convert the scene features into scene-dependent attributes (such as scale, position and orientation) and scene-independent representations (i.e., appearance and shape). Experimental results substantiate the efficacy of the proposed method, demonstrating remarkable proficiency in global object-centric representation learning, object identification, scene generation with specific objects and scene decomposition.