LMI
Abstract:Sailor2 is a family of cutting-edge multilingual language models for South-East Asian (SEA) languages, available in 1B, 8B, and 20B sizes to suit diverse applications. Building on Qwen2.5, Sailor2 undergoes continuous pre-training on 500B tokens (400B SEA-specific and 100B replay tokens) to support 13 SEA languages while retaining proficiency in Chinese and English. Sailor2-20B model achieves a 50-50 win rate against GPT-4o across SEA languages. We also deliver a comprehensive cookbook on how to develop the multilingual model in an efficient manner, including five key aspects: data curation, pre-training, post-training, model customization and evaluation. We hope that Sailor2 model (Apache 2.0 license) will drive language development in the SEA region, and Sailor2 cookbook will inspire researchers to build more inclusive LLMs for other under-served languages.
Abstract:Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains. Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities. This typically involves extensive sampling at inference time guided by an external LLM verifier, resulting in a two-player system. Despite external guidance, the effectiveness of this system demonstrates the potential of a single LLM to tackle complex tasks. Thus, we pose a new research problem: Can we internalize the searching capabilities to fundamentally enhance the reasoning abilities of a single LLM? This work explores an orthogonal direction focusing on post-training LLMs for autoregressive searching (i.e., an extended reasoning process with self-reflection and self-exploration of new strategies). To achieve this, we propose the Chain-of-Action-Thought (COAT) reasoning and a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning. Our approach results in Satori, a 7B LLM trained on open-source models and data. Extensive empirical evaluations demonstrate that Satori achieves state-of-the-art performance on mathematical reasoning benchmarks while exhibits strong generalization to out-of-domain tasks. Code, data, and models will be fully open-sourced.
Abstract:Retrieval-Augmented Generation (RAG) systems based on Large Language Models (LLMs) have become essential for tasks such as question answering and content generation. However, their increasing impact on public opinion and information dissemination has made them a critical focus for security research due to inherent vulnerabilities. Previous studies have predominantly addressed attacks targeting factual or single-query manipulations. In this paper, we address a more practical scenario: topic-oriented adversarial opinion manipulation attacks on RAG models, where LLMs are required to reason and synthesize multiple perspectives, rendering them particularly susceptible to systematic knowledge poisoning. Specifically, we propose Topic-FlipRAG, a two-stage manipulation attack pipeline that strategically crafts adversarial perturbations to influence opinions across related queries. This approach combines traditional adversarial ranking attack techniques and leverages the extensive internal relevant knowledge and reasoning capabilities of LLMs to execute semantic-level perturbations. Experiments show that the proposed attacks effectively shift the opinion of the model's outputs on specific topics, significantly impacting user information perception. Current mitigation methods cannot effectively defend against such attacks, highlighting the necessity for enhanced safeguards for RAG systems, and offering crucial insights for LLM security research.
Abstract:Remote sensing (RS) visual tasks have gained significant academic and practical importance. However, they encounter numerous challenges that hinder effective feature extraction, including the detection and recognition of multiple objects exhibiting substantial variations in scale within a single image. While prior dual-branch or multi-branch architectural strategies have been effective in managing these object variances, they have concurrently resulted in considerable increases in computational demands and parameter counts. Consequently, these architectures are rendered less viable for deployment on resource-constrained devices. Contemporary lightweight backbone networks, designed primarily for natural images, frequently encounter difficulties in effectively extracting features from multi-scale objects, which compromises their efficacy in RS visual tasks. This article introduces LWGANet, a specialized lightweight backbone network tailored for RS visual tasks, incorporating a novel lightweight group attention (LWGA) module designed to address these specific challenges. LWGA module, tailored for RS imagery, adeptly harnesses redundant features to extract a wide range of spatial information, from local to global scales, without introducing additional complexity or computational overhead. This facilitates precise feature extraction across multiple scales within an efficient framework.LWGANet was rigorously evaluated across twelve datasets, which span four crucial RS visual tasks: scene classification, oriented object detection, semantic segmentation, and change detection. The results confirm LWGANet's widespread applicability and its ability to maintain an optimal balance between high performance and low complexity, achieving SOTA results across diverse datasets. LWGANet emerged as a novel solution for resource-limited scenarios requiring robust RS image processing capabilities.
Abstract:Data imputation is crucial for addressing challenges posed by missing values in multivariate time series data across various fields, such as healthcare, traffic, and economics, and has garnered significant attention. Among various methods, diffusion model-based approaches show notable performance improvements. However, existing methods often cause disharmonious boundaries between missing and known regions and overlook long-range dependencies in missing data estimation, leading to suboptimal results. To address these issues, we propose a Diffusion-based time Series Data Imputation (DSDI) framework. We develop a weight-reducing injection strategy that incorporates the predicted values of missing points with reducing weights into the reverse diffusion process to mitigate boundary inconsistencies. Further, we introduce a multi-scale S4-based U-Net, which combines hierarchical information from different levels via multi-resolution integration to capture long-term dependencies. Experimental results demonstrate that our model outperforms existing imputation methods.
Abstract:Retrieval-Augmented Generation (RAG) addresses hallucination and real-time constraints by dynamically retrieving relevant information from a knowledge database to supplement the LLMs' input. When presented with a query, RAG selects the most semantically similar texts from its knowledge bases and uses them as context for the LLMs to generate more accurate responses. RAG also creates a new attack surface, especially since RAG databases are frequently sourced from public domains. While existing studies have predominantly focused on optimizing RAG's performance and efficiency, emerging research has begun addressing the security concerns associated with RAG. However, these works have some limitations, typically focusing on either white-box methodologies or heuristic-based black-box attacks. Furthermore, prior research has mainly targeted simple factoid question answering, which is neither practically challenging nor resistant to correction. In this paper, we unveil a more realistic and threatening scenario: opinion manipulation for controversial topics against RAG. Particularly, we propose a novel RAG black-box attack method, termed FlipedRAG, which is transfer-based. By leveraging instruction engineering, we obtain partial retrieval model outputs from black-box RAG system, facilitating the training of surrogate models to enhance the effectiveness of opinion manipulation attack. Extensive experimental results confirms that our approach significantly enhances the average success rate of opinion manipulation by 16.7%. It achieves an average of a 50% directional change in the opinion polarity of RAG responses across four themes. Additionally, it induces a 20% shift in user cognition. Furthermore, we discuss the efficacy of potential defense mechanisms and conclude that they are insufficient in mitigating this type of attack, highlighting the urgent need to develop novel defensive strategies.
Abstract:Layer fusion techniques are critical to improving the inference efficiency of deep neural networks (DNN) for deployment. Fusion aims to lower inference costs by reducing data transactions between an accelerator's on-chip buffer and DRAM. This is accomplished by grouped execution of multiple operations like convolution and activations together into single execution units - fusion groups. However, on-chip buffer capacity limits fusion group size and optimizing fusion on whole DNNs requires partitioning into multiple fusion groups. Finding the optimal groups is a complex problem where the presence of invalid solutions hampers traditional search algorithms and demands robust approaches. In this paper we incorporate Explainable AI, specifically Graph Explanation Techniques (GET), into layer fusion. Given an invalid fusion group, we identify the operations most responsible for group invalidity, then use this knowledge to recursively split the original fusion group via a greedy tree-based algorithm to minimize DRAM access. We pair our scheme with common algorithms and optimize DNNs on two types of layer fusion: Line-Buffer Depth First (LBDF) and Branch Requirement Reduction (BRR). Experiments demonstrate the efficacy of our scheme on several popular and classical convolutional neural networks like ResNets and MobileNets. Our scheme achieves over 20% DRAM Access reduction on EfficientNet-B3.
Abstract:This study is based on the ICASSP 2025 Signal Processing Grand Challenge's Accelerometer-Based Person-in-Bed Detection Challenge, which aims to determine bed occupancy using accelerometer signals. The task is divided into two tracks: "in bed" and "not in bed" segmented detection, and streaming detection, facing challenges such as individual differences, posture variations, and external disturbances. We propose a spectral-temporal fusion-based feature representation method with mixup data augmentation, and adopt Intersection over Union (IoU) loss to optimize detection accuracy. In the two tracks, our method achieved outstanding results of 100.00% and 95.55% in detection scores, securing first place and third place, respectively.
Abstract:Multimodal fake news detection aims to automatically identify real or fake news, thereby mitigating the adverse effects caused by such misinformation. Although prevailing approaches have demonstrated their effectiveness, challenges persist in cross-modal feature fusion and refinement for classification. To address this, we present a residual-aware compensation network with multi-granularity constraints (RaCMC) for fake news detection, that aims to sufficiently interact and fuse cross-modal features while amplifying the differences between real and fake news. First, a multiscale residual-aware compensation module is designed to interact and fuse features at different scales, and ensure both the consistency and exclusivity of feature interaction, thus acquiring high-quality features. Second, a multi-granularity constraints module is implemented to limit the distribution of both the news overall and the image-text pairs within the news, thus amplifying the differences between real and fake news at the news and feature levels. Finally, a dominant feature fusion reasoning module is developed to comprehensively evaluate news authenticity from the perspectives of both consistency and inconsistency. Experiments on three public datasets, including Weibo17, Politifact and GossipCop, reveal the superiority of the proposed method.
Abstract:Parameter-efficient fine-tuning (PEFT) methods optimize large language models (LLMs) by modifying or introducing a small number of parameters to enhance alignment with downstream tasks. However, they can result in catastrophic forgetting, where LLMs prioritize new knowledge at the expense of comprehensive world knowledge. A promising approach to mitigate this issue is to recall prior memories based on the original knowledge. To this end, we propose a model-agnostic PEFT framework, IMSM, which Interweaves Memories of a Siamese Large Language Model. Specifically, our siamese LLM is equipped with an existing PEFT method. Given an incoming query, it generates two distinct memories based on the pre-trained and fine-tuned parameters. IMSM then incorporates an interweaving mechanism that regulates the contributions of both original and enhanced memories when generating the next token. This framework is theoretically applicable to all open-source LLMs and existing PEFT methods. We conduct extensive experiments across various benchmark datasets, evaluating the performance of popular open-source LLMs using the proposed IMSM, in comparison to both classical and leading PEFT methods. Our findings indicate that IMSM maintains comparable time and space efficiency to backbone PEFT methods while significantly improving performance and effectively mitigating catastrophic forgetting.