Abstract:The salient information of an infrared image and the abundant texture of a visible image can be fused to obtain a comprehensive image. As can be known, the current fusion methods based on Transformer techniques for infrared and visible (IV) images have exhibited promising performance. However, the attention mechanism of the previous Transformer-based methods was prone to extract common information from source images without considering the discrepancy information, which limited fusion performance. In this paper, by reevaluating the cross-attention mechanism, we propose an alternate Transformer fusion network (ATFuse) to fuse IV images. Our ATFuse consists of one discrepancy information injection module (DIIM) and two alternate common information injection modules (ACIIM). The DIIM is designed by modifying the vanilla cross-attention mechanism, which can promote the extraction of the discrepancy information of the source images. Meanwhile, the ACIIM is devised by alternately using the vanilla cross-attention mechanism, which can fully mine common information and integrate long dependencies. Moreover, the successful training of ATFuse is facilitated by a proposed segmented pixel loss function, which provides a good trade-off for texture detail and salient structure preservation. The qualitative and quantitative results on public datasets indicate our ATFFuse is effective and superior compared to other state-of-the-art methods.
Abstract:In this paper, company investment value evaluation models are established based on comprehensive company information. After data mining and extracting a set of 436 feature parameters, an optimal subset of features is obtained by dimension reduction through tree-based feature selection, followed by the 5-fold cross-validation using XGBoost and LightGBM models. The results show that the Root-Mean-Square Error (RMSE) reached 3.098 and 3.059, respectively. In order to further improve the stability and generalization capability, Bayesian Ridge Regression has been used to train a stacking model based on the XGBoost and LightGBM models. The corresponding RMSE is up to 3.047. Finally, the importance of different features to the LightGBM model is analysed.