Abstract:Image forgery localization (IFL) is a crucial technique for preventing tampered image misuse and protecting social safety. However, due to the rapid development of image tampering technologies, extracting more comprehensive and accurate forgery clues remains an urgent challenge. To address these challenges, we introduce a novel information-theoretic IFL framework named SUMI-IFL that imposes sufficiency-view and minimality-view constraints on forgery feature representation. First, grounded in the theoretical analysis of mutual information, the sufficiency-view constraint is enforced on the feature extraction network to ensure that the latent forgery feature contains comprehensive forgery clues. Considering that forgery clues obtained from a single aspect alone may be incomplete, we construct the latent forgery feature by integrating several individual forgery features from multiple perspectives. Second, based on the information bottleneck, the minimality-view constraint is imposed on the feature reasoning network to achieve an accurate and concise forgery feature representation that counters the interference of task-unrelated features. Extensive experiments show the superior performance of SUMI-IFL to existing state-of-the-art methods, not only on in-dataset comparisons but also on cross-dataset comparisons.
Abstract:Talking head synthesis with arbitrary speech audio is a crucial challenge in the field of digital humans. Recently, methods based on radiance fields have received increasing attention due to their ability to synthesize high-fidelity and identity-consistent talking heads from just a few minutes of training video. However, due to the limited scale of the training data, these methods often exhibit poor performance in audio-lip synchronization and visual quality. In this paper, we propose a novel 3D Gaussian-based method called PointTalk, which constructs a static 3D Gaussian field of the head and deforms it in sync with the audio. It also incorporates an audio-driven dynamic lip point cloud as a critical component of the conditional information, thereby facilitating the effective synthesis of talking heads. Specifically, the initial step involves generating the corresponding lip point cloud from the audio signal and capturing its topological structure. The design of the dynamic difference encoder aims to capture the subtle nuances inherent in dynamic lip movements more effectively. Furthermore, we integrate the audio-point enhancement module, which not only ensures the synchronization of the audio signal with the corresponding lip point cloud within the feature space, but also facilitates a deeper understanding of the interrelations among cross-modal conditional features. Extensive experiments demonstrate that our method achieves superior high-fidelity and audio-lip synchronization in talking head synthesis compared to previous methods.
Abstract:Recently, a novel form of audio partial forgery has posed challenges to its forensics, requiring advanced countermeasures to detect subtle forgery manipulations within long-duration audio. However, existing countermeasures still serve a classification purpose and fail to perform meaningful analysis of the start and end timestamps of partial forgery segments. To address this challenge, we introduce a novel coarse-to-fine proposal refinement framework (CFPRF) that incorporates a frame-level detection network (FDN) and a proposal refinement network (PRN) for audio temporal forgery detection and localization. Specifically, the FDN aims to mine informative inconsistency cues between real and fake frames to obtain discriminative features that are beneficial for roughly indicating forgery regions. The PRN is responsible for predicting confidence scores and regression offsets to refine the coarse-grained proposals derived from the FDN. To learn robust discriminative features, we devise a difference-aware feature learning (DAFL) module guided by contrastive representation learning to enlarge the sensitive differences between different frames induced by minor manipulations. We further design a boundary-aware feature enhancement (BAFE) module to capture the contextual information of multiple transition boundaries and guide the interaction between boundary information and temporal features via a cross-attention mechanism. Extensive experiments show that our CFPRF achieves state-of-the-art performance on various datasets, including LAV-DF, ASVS2019PS, and HAD.
Abstract:In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide array of text-centric tasks. However, their `large' scale introduces significant computational and storage challenges, particularly in managing the key-value states of the transformer, which limits their wider applicability. Therefore, we propose to adaptively release resources from caches and rebuild the necessary key-value states. Particularly, we accomplish this by a lightweight controller module to approximate an ideal top-$K$ sparse attention. This module retains the tokens with the highest top-$K$ attention weights and simultaneously rebuilds the discarded but necessary tokens, which may become essential for future decoding. Comprehensive experiments in natural language generation and modeling reveal that our method is not only competitive with full attention in terms of performance but also achieves a significant throughput improvement of up to 221.8%. The code for replication is available on the https://github.com/WHUIR/ADORE.
Abstract:While impressive performance has been achieved in image captioning, the limited diversity of the generated captions and the large parameter scale remain major barriers to the real-word application of these systems. In this work, we propose a lightweight image captioning network in combination with continuous diffusion, called Prefix-diffusion. To achieve diversity, we design an efficient method that injects prefix image embeddings into the denoising process of the diffusion model. In order to reduce trainable parameters, we employ a pre-trained model to extract image features and further design an extra mapping network. Prefix-diffusion is able to generate diverse captions with relatively less parameters, while maintaining the fluency and relevance of the captions benefiting from the generative capabilities of the diffusion model. Our work paves the way for scaling up diffusion models for image captioning, and achieves promising performance compared with recent approaches.
Abstract:The vulnerability of Deep Neural Networks (DNNs) to adversarial examples has been confirmed. Existing adversarial defenses primarily aim at preventing adversarial examples from attacking DNNs successfully, rather than preventing their generation. If the generation of adversarial examples is unregulated, images within reach are no longer secure and pose a threat to non-robust DNNs. Although gradient obfuscation attempts to address this issue, it has been shown to be circumventable. Therefore, we propose a novel adversarial defense mechanism, which is referred to as immune defense and is the example-based pre-defense. This mechanism applies carefully designed quasi-imperceptible perturbations to the raw images to prevent the generation of adversarial examples for the raw images, and thereby protecting both images and DNNs. These perturbed images are referred to as Immune Examples (IEs). In the white-box immune defense, we provide a gradient-based and an optimization-based approach, respectively. Additionally, the more complex black-box immune defense is taken into consideration. We propose Masked Gradient Sign Descent (MGSD) to reduce approximation error and stabilize the update to improve the transferability of IEs and thereby ensure their effectiveness against black-box adversarial attacks. The experimental results demonstrate that the optimization-based approach has superior performance and better visual quality in white-box immune defense. In contrast, the gradient-based approach has stronger transferability and the proposed MGSD significantly improve the transferability of baselines.
Abstract:Malicious intelligent algorithms greatly threaten the security of social users' privacy by detecting and analyzing the uploaded photos to social network platforms. The destruction to DNNs brought by the adversarial attack sparks the potential that adversarial examples serve as a new protection mechanism for privacy security in social networks. However, the existing adversarial example does not have recoverability for serving as an effective protection mechanism. To address this issue, we propose a recoverable generative adversarial network to generate self-recoverable adversarial examples. By modeling the adversarial attack and recovery as a united task, our method can minimize the error of the recovered examples while maximizing the attack ability, resulting in better recoverability of adversarial examples. To further boost the recoverability of these examples, we exploit a dimension reducer to optimize the distribution of adversarial perturbation. The experimental results prove that the adversarial examples generated by the proposed method present superior recoverability, attack ability, and robustness on different datasets and network architectures, which ensure its effectiveness as a protection mechanism in social networks.
Abstract:Fine-grained IP geolocation systems often rely on some linear delay-distance rules. They are not easy to generalize in network environments where the delay-distance relationship is non-linear. Recently, researchers begin to pay attention to learning-based IP geolocation systems. These data-driven algorithms leverage multi-layer perceptron (MLP) to model non-linear relationships. However, MLP is not so suitable for modeling computer networks because networks are fundamentally graph-typed data. MLP-based IP geolocation systems only treat IP addresses as isolated data instances, forgoing the connection information between IP addresses. This would lead to sub-optimal representations and limit the geolocation performance. Graph convolutional network (GCN) is an emerging deep learning method for graph-typed data presentation. In this work, we research how to model computer networks for fine-grained IP geolocation with GCN. First, we formulate the IP geolocation task as an attributed graph node regression problem. Then, a GCN-based IP geolocation system named GCN-Geo is proposed to predict the location of each IP address. GCN-Geo consists of a preprocessor, an encoder, graph convolutional (GC) layers and a decoder. The preprocessor and the encoder transform raw measurement data into the initial graph embeddings. GC layers refine the initial graph node embeddings by explicitly modeling the connection information between IP addresses. The proposed decoder can relieve the converging problem of GCN-Geo by considering some prior knowledge about target IP addresses. Finally, the experimental results in three real-world datasets show that: GCN-Geo clearly outperforms the state-of-art rule-based and learning-based baselines on all three datasets w.r.t. average, median and max error distances. This work verifies the potential of GCN in fine-grained IP geolocation.
Abstract:Collaborative learning allows multiple clients to train a joint model without sharing their data with each other. Each client performs training locally and then submits the model updates to a central server for aggregation. Since the server has no visibility into the process of generating the updates, collaborative learning is vulnerable to poisoning attacks where a malicious client can generate a poisoned update to introduce backdoor functionality to the joint model. The existing solutions for detecting poisoned updates, however, fail to defend against the recently proposed attacks, especially in the non-IID setting. In this paper, we present a novel defense scheme to detect anomalous updates in both IID and non-IID settings. Our key idea is to realize client-side cross-validation, where each update is evaluated over other clients' local data. The server will adjust the weights of the updates based on the evaluation results when performing aggregation. To adapt to the unbalanced distribution of data in the non-IID setting, a dynamic client allocation mechanism is designed to assign detection tasks to the most suitable clients. During the detection process, we also protect the client-level privacy to prevent malicious clients from stealing the training data of other clients, by integrating differential privacy with our design without degrading the detection performance. Our experimental evaluations on two real-world datasets show that our scheme is significantly robust to two representative poisoning attacks.
Abstract:In recent years, with the prevalence of social media and smart devices, people causally reveal their locations such as shops, hotels, and restaurants in their tweets. Recognizing and linking such fine-grained location mentions to well-defined location profiles are beneficial for retrieval and recommendation systems. Prior studies heavily rely on hand-crafted linguistic features. Recently, deep learning has shown its effectiveness in feature representation learning for many NLP tasks. In this paper, we propose DLocRL, a new Deep pipeline for fine-grained Location Recognition and Linking in tweets. DLocRL leverages representation learning, semantic composition, attention and gate mechanisms to exploit semantic context features for location recognition and linking. Furthermore, a novel post-processing strategy, named Geographical Pair Linking, is developed to improve the linking performance. In this way, DLocRL does not require hand-crafted features. The experimental results show the effectiveness of DLocRL on fine-grained location recognition and linking with a real-world Twitter dataset.