Abstract:While fusing the capacities and advantages of various large language models (LLMs) offers a pathway to construct more powerful and versatile models, a fundamental challenge is to properly select advantageous model during the training. Existing fusion methods primarily focus on the training mode that uses cross entropy on ground truth in a teacher-forcing setup to measure a model's advantage, which may provide limited insight towards model advantage. In this paper, we introduce a novel approach that enhances the fusion process by incorporating both the training and inference modes. Our method evaluates model advantage not only through cross entropy during training but also by considering inference outputs, providing a more comprehensive assessment. To combine the two modes effectively, we introduce ProFuser to progressively transition from inference mode to training mode. To validate ProFuser's effectiveness, we fused three models, including vicuna-7b-v1.5, Llama-2-7b-chat, and mpt-7b-8k-chat, and demonstrated the improved performance in knowledge, reasoning, and safety compared to baseline methods.
Abstract:In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide array of text-centric tasks. However, their `large' scale introduces significant computational and storage challenges, particularly in managing the key-value states of the transformer, which limits their wider applicability. Therefore, we propose to adaptively release resources from caches and rebuild the necessary key-value states. Particularly, we accomplish this by a lightweight controller module to approximate an ideal top-$K$ sparse attention. This module retains the tokens with the highest top-$K$ attention weights and simultaneously rebuilds the discarded but necessary tokens, which may become essential for future decoding. Comprehensive experiments in natural language generation and modeling reveal that our method is not only competitive with full attention in terms of performance but also achieves a significant throughput improvement of up to 221.8%. The code for replication is available on the https://github.com/WHUIR/ADORE.
Abstract:Aligning human preference and value is an important requirement for building contemporary foundation models and embodied AI. However, popular approaches such as reinforcement learning with human feedback (RLHF) break down the task into successive stages, such as supervised fine-tuning (SFT), reward modeling (RM), and reinforcement learning (RL), each performing one specific learning task. Such a sequential approach results in serious issues such as significant under-utilization of data and distribution mismatch between the learned reward model and generated policy, which eventually lead to poor alignment performance. We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF), capable of integrating both human preference and demonstration to train reward models and the policy. The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms such as RLHF and Directly Policy Optimization (DPO), and only requires minor changes to the existing alignment pipelines. We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo. We observe that the proposed solutions outperform the existing alignment algorithms such as RLHF and DPO by large margins, especially when the amount of high-quality preference data is relatively limited.
Abstract:Aligning human preference and value is an important requirement for contemporary foundation models. State-of-the-art techniques such as Reinforcement Learning from Human Feedback (RLHF) often consist of two stages: 1) supervised fine-tuning (SFT), where the model is fine-tuned by learning from human demonstration data; 2) Preference learning, where preference data is used to learn a reward model, which is in turn used by a reinforcement learning (RL) step to fine-tune the model. Such reward model serves as a proxy to human preference, and it is critical to guide the RL step towards improving the model quality. In this work, we argue that the SFT stage significantly benefits from learning a reward model as well. Instead of using the human demonstration data directly via supervised learning, we propose to leverage an Inverse Reinforcement Learning (IRL) technique to (explicitly or implicitly) build an reward model, while learning the policy model. This approach leads to new SFT algorithms that are not only efficient to implement, but also promote the ability to distinguish between the preferred and non-preferred continuations. Moreover, we identify a connection between the proposed IRL based approach, and certain self-play approach proposed recently, and showed that self-play is a special case of modeling a reward-learning agent. Theoretically, we show that the proposed algorithms converge to the stationary solutions of the IRL problem. Empirically, we align 1B and 7B models using proposed methods and evaluate them on a reward benchmark model and the HuggingFace Open LLM Leaderboard. The proposed methods show significant performance improvement over existing SFT approaches. Our results indicate that it is beneficial to explicitly or implicitly leverage reward learning throughout the entire alignment process.
Abstract:Large language models (LLMs) have advanced the development of various AI conversational agents, including role-playing conversational agents that mimic diverse characters and human behaviors. While prior research has predominantly focused on enhancing the conversational capability, role-specific knowledge, and stylistic attributes of these agents, there has been a noticeable gap in assessing their social intelligence. In this paper, we introduce RoleInteract, the first benchmark designed to systematically evaluate the sociality of role-playing conversational agents at both individual and group levels of social interactions. The benchmark is constructed from a variety of sources and covers a wide range of 500 characters and over 6,000 question prompts and 30,800 multi-turn role-playing utterances. We conduct comprehensive evaluations on this benchmark using mainstream open-source and closed-source LLMs. We find that agents excelling in individual level does not imply their proficiency in group level. Moreover, the behavior of individuals may drift as a result of the influence exerted by other agents within the group. Experimental results on RoleInteract confirm its significance as a testbed for assessing the social interaction of role-playing conversational agents. The benchmark is publicly accessible at https://github.com/X-PLUG/RoleInteract.
Abstract:In vision-language pre-training (VLP), masked image modeling (MIM) has recently been introduced for fine-grained cross-modal alignment. However, in most existing methods, the reconstruction targets for MIM lack high-level semantics, and text is not sufficiently involved in masked modeling. These two drawbacks limit the effect of MIM in facilitating cross-modal semantic alignment. In this work, we propose a semantics-enhanced cross-modal MIM framework (SemMIM) for vision-language representation learning. Specifically, to provide more semantically meaningful supervision for MIM, we propose a local semantics enhancing approach, which harvest high-level semantics from global image features via self-supervised agreement learning and transfer them to local patch encodings by sharing the encoding space. Moreover, to achieve deep involvement of text during the entire MIM process, we propose a text-guided masking strategy and devise an efficient way of injecting textual information in both masked modeling and reconstruction target acquisition. Experimental results validate that our method improves the effectiveness of the MIM task in facilitating cross-modal semantic alignment. Compared to previous VLP models with similar model size and data scale, our SemMIM model achieves state-of-the-art or competitive performance on multiple downstream vision-language tasks.
Abstract:The session-based recommendation (SBR) garners increasing attention due to its ability to predict anonymous user intents within limited interactions. Emerging efforts incorporate various kinds of side information into their methods for enhancing task performance. In this survey, we thoroughly review the side information-driven session-based recommendation from a data-centric perspective. Our survey commences with an illustration of the motivation and necessity behind this research topic. This is followed by a detailed exploration of various benchmarks rich in side information, pivotal for advancing research in this field. Moreover, we delve into how these diverse types of side information enhance SBR, underscoring their characteristics and utility. A systematic review of research progress is then presented, offering an analysis of the most recent and representative developments within this topic. Finally, we present the future prospects of this vibrant topic.
Abstract:In video-text retrieval, most existing methods adopt the dual-encoder architecture for fast retrieval, which employs two individual encoders to extract global latent representations for videos and texts. However, they face challenges in capturing fine-grained semantic concepts. In this work, we propose the UNIFY framework, which learns lexicon representations to capture fine-grained semantics and combines the strengths of latent and lexicon representations for video-text retrieval. Specifically, we map videos and texts into a pre-defined lexicon space, where each dimension corresponds to a semantic concept. A two-stage semantics grounding approach is proposed to activate semantically relevant dimensions and suppress irrelevant dimensions. The learned lexicon representations can thus reflect fine-grained semantics of videos and texts. Furthermore, to leverage the complementarity between latent and lexicon representations, we propose a unified learning scheme to facilitate mutual learning via structure sharing and self-distillation. Experimental results show our UNIFY framework largely outperforms previous video-text retrieval methods, with 4.8% and 8.2% Recall@1 improvement on MSR-VTT and DiDeMo respectively.
Abstract:Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs, empowering them to interact with external tools (e.g., APIs, functions) and complete complex tasks in a self-directed fashion. The challenge of tool use demands that LLMs not only understand user queries and generate answers but also excel in task planning, memory management, tool invocation, and result summarization. While traditional approaches focus on training a single LLM with all these capabilities, performance limitations become apparent, particularly with smaller models. Moreover, the entire LLM may require retraining when tools are updated. To overcome these challenges, we propose a novel strategy that decomposes the aforementioned capabilities into a planner, caller, and summarizer. Each component is implemented by a single LLM that focuses on a specific capability and collaborates with other components to accomplish the task. This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability. To effectively train this framework, we introduce a two-stage training paradigm. First, we fine-tune a backbone LLM on the entire dataset without discriminating sub-tasks, providing the model with a comprehensive understanding of the task. Second, the fine-tuned LLM is used to instantiate the planner, caller, and summarizer respectively, which are continually fine-tuned on respective sub-tasks. Evaluation across various tool-use benchmarks illustrates that our proposed multi-LLM framework surpasses the traditional single-LLM approach, highlighting its efficacy and advantages in tool learning.
Abstract:Recently, the strong text creation ability of Large Language Models(LLMs) has given rise to many tools for assisting paper reading or even writing. However, the weak diagram analysis abilities of LLMs or Multimodal LLMs greatly limit their application scenarios, especially for scientific academic paper writing. In this work, towards a more versatile copilot for academic paper writing, we mainly focus on strengthening the multi-modal diagram analysis ability of Multimodal LLMs. By parsing Latex source files of high-quality papers, we carefully build a multi-modal diagram understanding dataset M-Paper. By aligning diagrams in the paper with related paragraphs, we construct professional diagram analysis samples for training and evaluation. M-Paper is the first dataset to support joint comprehension of multiple scientific diagrams, including figures and tables in the format of images or Latex codes. Besides, to better align the copilot with the user's intention, we introduce the `outline' as the control signal, which could be directly given by the user or revised based on auto-generated ones. Comprehensive experiments with a state-of-the-art Mumtimodal LLM demonstrate that training on our dataset shows stronger scientific diagram understanding performance, including diagram captioning, diagram analysis, and outline recommendation. The dataset, code, and model are available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/PaperOwl.