Abstract:This paper has been accepted in the NeurIPS 2024 D & B Track. Harmful memes have proliferated on the Chinese Internet, while research on detecting Chinese harmful memes significantly lags behind due to the absence of reliable datasets and effective detectors. To this end, we focus on the comprehensive detection of Chinese harmful memes. We construct ToxiCN MM, the first Chinese harmful meme dataset, which consists of 12,000 samples with fine-grained annotations for various meme types. Additionally, we propose a baseline detector, Multimodal Knowledge Enhancement (MKE), incorporating contextual information of meme content generated by the LLM to enhance the understanding of Chinese memes. During the evaluation phase, we conduct extensive quantitative experiments and qualitative analyses on multiple baselines, including LLMs and our MKE. The experimental results indicate that detecting Chinese harmful memes is challenging for existing models while demonstrating the effectiveness of MKE. The resources for this paper are available at https://github.com/DUT-lujunyu/ToxiCN_MM.
Abstract:News recommendation emerges as a primary means for users to access content of interest from the vast amount of news. The title clickbait extensively exists in news domain and increases the difficulty for news recommendation to offer satisfactory services for users. Fortunately, we find that news abstract, as a critical field of news, aligns cohesively with the news authenticity. To this end, we propose a Title Debiasing News Recommendation with Cross-field Contrastive learning (TDNR-C2) to overcome the title bias by incorporating news abstract. Specifically, a multi-field knowledge extraction module is devised to extract multi-view knowledge about news from various fields. Afterwards, we present a cross-field contrastive learning module to conduct bias removal via contrasting learned knowledge from title and abstract fileds. Experimental results on a real-world dataset demonstrate the superiority of the proposed TDNR-C2 over existing state-of-the-art methods. Further analysis also indicates the significance of news abstract for title debiasing.
Abstract:Textual personality detection aims to identify personality traits by analyzing user-generated content. To achieve this effectively, it is essential to thoroughly examine user-generated content from various perspectives. However, previous studies have struggled with automatically extracting and effectively integrating information from multiple perspectives, thereby limiting their performance on personality detection. To address these challenges, we propose the Multi-view Mixture-of-Experts Model for Textual Personality Detection (MvP). MvP introduces a Multi-view Mixture-of-Experts (MoE) network to automatically analyze user posts from various perspectives. Additionally, it employs User Consistency Regularization to mitigate conflicts among different perspectives and learn a multi-view generic user representation. The model's training is optimized via a multi-task joint learning strategy that balances supervised personality detection with self-supervised user consistency constraints. Experimental results on two widely-used personality detection datasets demonstrate the effectiveness of the MvP model and the benefits of automatically analyzing user posts from diverse perspectives for textual personality detection.
Abstract:Synthesizing electronic health records (EHR) data has become a preferred strategy to address data scarcity, improve data quality, and model fairness in healthcare. However, existing approaches for EHR data generation predominantly rely on state-of-the-art generative techniques like generative adversarial networks, variational autoencoders, and language models. These methods typically replicate input visits, resulting in inadequate modeling of temporal dependencies between visits and overlooking the generation of time information, a crucial element in EHR data. Moreover, their ability to learn visit representations is limited due to simple linear mapping functions, thus compromising generation quality. To address these limitations, we propose a novel EHR data generation model called EHRPD. It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation. To enhance generation quality and diversity, we introduce a novel time-aware visit embedding module and a pioneering predictive denoising diffusion probabilistic model (PDDPM). Additionally, we devise a predictive U-Net (PU-Net) to optimize P-DDPM.We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives. The experimental results demonstrate the efficacy and utility of the proposed EHRPD in addressing the aforementioned limitations and advancing EHR data generation.
Abstract:Current methods of toxic language detection (TLD) typically rely on specific tokens to conduct decisions, which makes them suffer from lexical bias, leading to inferior performance and generalization. Lexical bias has both "useful" and "misleading" impacts on understanding toxicity. Unfortunately, instead of distinguishing between these impacts, current debiasing methods typically eliminate them indiscriminately, resulting in a degradation in the detection accuracy of the model. To this end, we propose a Counterfactual Causal Debiasing Framework (CCDF) to mitigate lexical bias in TLD. It preserves the "useful impact" of lexical bias and eliminates the "misleading impact". Specifically, we first represent the total effect of the original sentence and biased tokens on decisions from a causal view. We then conduct counterfactual inference to exclude the direct causal effect of lexical bias from the total effect. Empirical evaluations demonstrate that the debiased TLD model incorporating CCDF achieves state-of-the-art performance in both accuracy and fairness compared to competitive baselines applied on several vanilla models. The generalization capability of our model outperforms current debiased models for out-of-distribution data.
Abstract:Textual personality detection aims to identify personality characteristics by analyzing user-generated content toward social media platforms. Numerous psychological literature highlighted that personality encompasses both long-term stable traits and short-term dynamic states. However, existing studies often concentrate only on either long-term or short-term personality representations, without effectively combining both aspects. This limitation hinders a comprehensive understanding of individuals' personalities, as both stable traits and dynamic states are vital. To bridge this gap, we propose a Dual Enhanced Network(DEN) to jointly model users' long-term and short-term personality for textual personality detection. In DEN, a Long-term Personality Encoding is devised to effectively model long-term stable personality traits. Short-term Personality Encoding is presented to capture short-term dynamic personality states. The Bi-directional Interaction component facilitates the integration of both personality aspects, allowing for a comprehensive representation of the user's personality. Experimental results on two personality detection datasets demonstrate the effectiveness of the DEN model and the benefits of considering both the dynamic and stable nature of personality characteristics for textual personality detection.
Abstract:Session-based recommendation aims to predict intents of anonymous users based on their limited behaviors. Modeling user behaviors involves two distinct rationales: co-occurrence patterns reflected by item IDs, and fine-grained preferences represented by item modalities (e.g., text and images). However, existing methods typically entangle these causes, leading to their failure in achieving accurate and explainable recommendations. To this end, we propose a novel framework DIMO to disentangle the effects of ID and modality in the task. At the item level, we introduce a co-occurrence representation schema to explicitly incorporate cooccurrence patterns into ID representations. Simultaneously, DIMO aligns different modalities into a unified semantic space to represent them uniformly. At the session level, we present a multi-view self-supervised disentanglement, including proxy mechanism and counterfactual inference, to disentangle ID and modality effects without supervised signals. Leveraging these disentangled causes, DIMO provides recommendations via causal inference and further creates two templates for generating explanations. Extensive experiments on multiple real-world datasets demonstrate the consistent superiority of DIMO over existing methods. Further analysis also confirms DIMO's effectiveness in generating explanations.
Abstract:Sequential recommendation is dedicated to offering items of interest for users based on their history behaviors. The attribute-opinion pairs, expressed by users in their reviews for items, provide the potentials to capture user preferences and item characteristics at a fine-grained level. To this end, we propose a novel framework FineRec that explores the attribute-opinion pairs of reviews to finely handle sequential recommendation. Specifically, we utilize a large language model to extract attribute-opinion pairs from reviews. For each attribute, a unique attribute-specific user-opinion-item graph is created, where corresponding opinions serve as the edges linking heterogeneous user and item nodes. To tackle the diversity of opinions, we devise a diversity-aware convolution operation to aggregate information within the graphs, enabling attribute-specific user and item representation learning. Ultimately, we present an interaction-driven fusion mechanism to integrate attribute-specific user/item representations across all attributes for generating recommendations. Extensive experiments conducted on several realworld datasets demonstrate the superiority of our FineRec over existing state-of-the-art methods. Further analysis also verifies the effectiveness of our fine-grained manner in handling the task.
Abstract:The session-based recommendation (SBR) garners increasing attention due to its ability to predict anonymous user intents within limited interactions. Emerging efforts incorporate various kinds of side information into their methods for enhancing task performance. In this survey, we thoroughly review the side information-driven session-based recommendation from a data-centric perspective. Our survey commences with an illustration of the motivation and necessity behind this research topic. This is followed by a detailed exploration of various benchmarks rich in side information, pivotal for advancing research in this field. Moreover, we delve into how these diverse types of side information enhance SBR, underscoring their characteristics and utility. A systematic review of research progress is then presented, offering an analysis of the most recent and representative developments within this topic. Finally, we present the future prospects of this vibrant topic.
Abstract:Session-based recommendation intends to predict next purchased items based on anonymous behavior sequences. Numerous economic studies have revealed that item price is a key factor influencing user purchase decisions. Unfortunately, existing methods for session-based recommendation only aim at capturing user interest preference, while ignoring user price preference. Actually, there are primarily two challenges preventing us from accessing price preference. Firstly, the price preference is highly associated to various item features (i.e., category and brand), which asks us to mine price preference from heterogeneous information. Secondly, price preference and interest preference are interdependent and collectively determine user choice, necessitating that we jointly consider both price and interest preference for intent modeling. To handle above challenges, we propose a novel approach Bi-Preference Learning Heterogeneous Hypergraph Networks (BiPNet) for session-based recommendation. Specifically, the customized heterogeneous hypergraph networks with a triple-level convolution are devised to capture user price and interest preference from heterogeneous features of items. Besides, we develop a Bi-Preference Learning schema to explore mutual relations between price and interest preference and collectively learn these two preferences under the multi-task learning architecture. Extensive experiments on multiple public datasets confirm the superiority of BiPNet over competitive baselines. Additional research also supports the notion that the price is crucial for the task.