Abstract:Metric-based few-shot fine-grained classification has shown promise due to its simplicity and efficiency. However, existing methods often overlook task-level special cases and struggle with accurate category description and irrelevant sample information. To tackle these, we propose TAFD-Net: a task adaptive feature distribution network. It features a task-adaptive component for embedding to capture task-level nuances, an asymmetric metric for calculating feature distribution similarities between query samples and support categories, and a contrastive measure strategy to boost performance. Extensive experiments have been conducted on three datasets and the experimental results show that our proposed algorithm outperforms recent incremental learning algorithms.
Abstract:This paper has been accepted in the NeurIPS 2024 D & B Track. Harmful memes have proliferated on the Chinese Internet, while research on detecting Chinese harmful memes significantly lags behind due to the absence of reliable datasets and effective detectors. To this end, we focus on the comprehensive detection of Chinese harmful memes. We construct ToxiCN MM, the first Chinese harmful meme dataset, which consists of 12,000 samples with fine-grained annotations for various meme types. Additionally, we propose a baseline detector, Multimodal Knowledge Enhancement (MKE), incorporating contextual information of meme content generated by the LLM to enhance the understanding of Chinese memes. During the evaluation phase, we conduct extensive quantitative experiments and qualitative analyses on multiple baselines, including LLMs and our MKE. The experimental results indicate that detecting Chinese harmful memes is challenging for existing models while demonstrating the effectiveness of MKE. The resources for this paper are available at https://github.com/DUT-lujunyu/ToxiCN_MM.
Abstract:Patronizing and Condescending Language (PCL) is a form of discriminatory toxic speech targeting vulnerable groups, threatening both online and offline safety. While toxic speech research has mainly focused on overt toxicity, such as hate speech, microaggressions in the form of PCL remain underexplored. Additionally, dominant groups' discriminatory facial expressions and attitudes toward vulnerable communities can be more impactful than verbal cues, yet these frame features are often overlooked. In this paper, we introduce the PCLMM dataset, the first Chinese multimodal dataset for PCL, consisting of 715 annotated videos from Bilibili, with high-quality PCL facial frame spans. We also propose the MultiPCL detector, featuring a facial expression detection module for PCL recognition, demonstrating the effectiveness of modality complementarity in this challenging task. Our work makes an important contribution to advancing microaggression detection within the domain of toxic speech.
Abstract:Language-conditioned robot behavior plays a vital role in executing complex tasks by associating human commands or instructions with perception and actions. The ability to compose long-horizon tasks based on unconstrained language instructions necessitates the acquisition of a diverse set of general-purpose skills. However, acquiring inherent primitive skills in a coupled and long-horizon environment without external rewards or human supervision presents significant challenges. In this paper, we evaluate the relationship between skills and language instructions from a mathematical perspective, employing two forms of mutual information within the framework of language-conditioned policy learning. To maximize the mutual information between language and skills in an unsupervised manner, we propose an end-to-end imitation learning approach known as Language Conditioned Skill Discovery (LCSD). Specifically, we utilize vector quantization to learn discrete latent skills and leverage skill sequences of trajectories to reconstruct high-level semantic instructions. Through extensive experiments on language-conditioned robotic navigation and manipulation tasks, encompassing BabyAI, LORel, and CALVIN, we demonstrate the superiority of our method over prior works. Our approach exhibits enhanced generalization capabilities towards unseen tasks, improved skill interpretability, and notably higher rates of task completion success.
Abstract:With the large language model showing human-like logical reasoning and understanding ability, whether agents based on the large language model can simulate the interaction behavior of real users, so as to build a reliable virtual recommendation A/B test scene to help the application of recommendation research is an urgent, important and economic value problem. The combination of interaction design and machine learning can provide a more efficient and personalized user experience for products and services. This personalized service can meet the specific needs of users and improve user satisfaction and loyalty. Second, the interactive system can understand the user's views and needs for the product by providing a good user interface and interactive experience, and then use machine learning algorithms to improve and optimize the product. This iterative optimization process can continuously improve the quality and performance of the product to meet the changing needs of users. At the same time, designers need to consider how these algorithms and tools can be combined with interactive systems to provide a good user experience. This paper explores the potential applications of large language models, machine learning and interaction design for user interaction in recommendation systems and operating systems. By integrating these technologies, more intelligent and personalized services can be provided to meet user needs and promote continuous improvement and optimization of products. This is of great value for both recommendation research and user experience applications.
Abstract:Large Language Models (LLMs) are a class of generative AI models built using the Transformer network, capable of leveraging vast datasets to identify, summarize, translate, predict, and generate language. LLMs promise to revolutionize society, yet training these foundational models poses immense challenges. Semantic vector search within large language models is a potent technique that can significantly enhance search result accuracy and relevance. Unlike traditional keyword-based search methods, semantic search utilizes the meaning and context of words to grasp the intent behind queries and deliver more precise outcomes. Elasticsearch emerges as one of the most popular tools for implementing semantic search an exceptionally scalable and robust search engine designed for indexing and searching extensive datasets. In this article, we delve into the fundamentals of semantic search and explore how to harness Elasticsearch and Transformer models to bolster large language model processing paradigms. We gain a comprehensive understanding of semantic search principles and acquire practical skills for implementing semantic search in real-world model application scenarios.
Abstract:Data Pipeline plays an indispensable role in tasks such as modeling machine learning and developing data products. With the increasing diversification and complexity of Data sources, as well as the rapid growth of data volumes, building an efficient Data Pipeline has become crucial for improving work efficiency and solving complex problems. This paper focuses on exploring how to optimize data flow through automated machine learning methods by integrating AutoML with Data Pipeline. We will discuss how to leverage AutoML technology to enhance the intelligence of Data Pipeline, thereby achieving better results in machine learning tasks. By delving into the automation and optimization of Data flows, we uncover key strategies for constructing efficient data pipelines that can adapt to the ever-changing data landscape. This not only accelerates the modeling process but also provides innovative solutions to complex problems, enabling more significant outcomes in increasingly intricate data domains. Keywords- Data Pipeline Training;AutoML; Data environment; Machine learning
Abstract:Joint entity and relation extraction (JERE) is one of the most important tasks in information extraction. However, most existing works focus on sentence-level coarse-grained JERE, which have limitations in real-world scenarios. In this paper, we construct a large-scale document-level fine-grained JERE dataset DocRED-FE, which improves DocRED with Fine-Grained Entity Type. Specifically, we redesign a hierarchical entity type schema including 11 coarse-grained types and 119 fine-grained types, and then re-annotate DocRED manually according to this schema. Through comprehensive experiments we find that: (1) DocRED-FE is challenging to existing JERE models; (2) Our fine-grained entity types promote relation classification. We make DocRED-FE with instruction and the code for our baselines publicly available at https://github.com/PKU-TANGENT/DOCRED-FE.
Abstract:Object detection with on-board sensors (e.g., lidar, radar, and camera) play a crucial role in autonomous driving (AD), and these sensors complement each other in modalities. While crowdsensing may potentially exploit these sensors (of huge quantity) to derive more comprehensive knowledge, \textit{federated learning} (FL) appears to be the necessary tool to reach this potential: it enables autonomous vehicles (AVs) to train machine learning models without explicitly sharing raw sensory data. However, the multimodal sensors introduce various data heterogeneity across distributed AVs (e.g., label quantity skews and varied modalities), posing critical challenges to effective FL. To this end, we present AutoFed as a heterogeneity-aware FL framework to fully exploit multimodal sensory data on AVs and thus enable robust AD. Specifically, we first propose a novel model leveraging pseudo-labeling to avoid mistakenly treating unlabeled objects as the background. We also propose an autoencoder-based data imputation method to fill missing data modality (of certain AVs) with the available ones. To further reconcile the heterogeneity, we finally present a client selection mechanism exploiting the similarities among client models to improve both training stability and convergence rate. Our experiments on benchmark dataset confirm that AutoFed substantially improves over status quo approaches in both precision and recall, while demonstrating strong robustness to adverse weather conditions.
Abstract:The shield machine (SM) is a complex mechanical device used for tunneling. However, the monitoring and deciding were mainly done by artificial experience during traditional construction, which brought some limitations, such as hidden mechanical failures, human operator error, and sensor anomalies. To deal with these challenges, many scholars have studied SM intelligent methods. Most of these methods only take SM into account but do not consider the SM operating environment. So, this paper discussed the relationship among SM, geological information, and control terminals. Then, according to the relationship, models were established for the control terminal, including SM rate prediction and SM anomaly detection. The experimental results show that compared with baseline models, the proposed models in this paper perform better. In the proposed model, the R2 and MSE of rate prediction can reach 92.2\%, and 0.0064 respectively. The abnormal detection rate of anomaly detection is up to 98.2\%.