Abstract:We propose compleX-PINN, a novel physics-informed neural network (PINN) architecture that incorporates a learnable activation function inspired by Cauchy integral theorem. By learning the parameters of the activation function, compleX-PINN achieves high accuracy with just a single hidden layer. Empirical results show that compleX-PINN effectively solves problems where traditional PINNs struggle and consistently delivers significantly higher precision, often by an order of magnitude.
Abstract:Dataset distillation (DD) enhances training efficiency and reduces bandwidth by condensing large datasets into smaller synthetic ones. It enables models to achieve performance comparable to those trained on the raw full dataset and has become a widely adopted method for data sharing. However, security concerns in DD remain underexplored. Existing studies typically assume that malicious behavior originates from dataset owners during the initial distillation process, where backdoors are injected into raw datasets. In contrast, this work is the first to address a more realistic and concerning threat: attackers may intercept the dataset distribution process, inject backdoors into the distilled datasets, and redistribute them to users. While distilled datasets were previously considered resistant to backdoor attacks, we demonstrate that they remain vulnerable to such attacks. Furthermore, we show that attackers do not even require access to any raw data to inject the backdoors successfully. Specifically, our approach reconstructs conceptual archetypes for each class from the model trained on the distilled dataset. Backdoors are then injected into these archetypes to update the distilled dataset. Moreover, we ensure the updated dataset not only retains the backdoor but also preserves the original optimization trajectory, thus maintaining the knowledge of the raw dataset. To achieve this, a hybrid loss is designed to integrate backdoor information along the benign optimization trajectory, ensuring that previously learned information is not forgotten. Extensive experiments demonstrate that distilled datasets are highly vulnerable to backdoor attacks, with risks pervasive across various raw datasets, distillation methods, and downstream training strategies. Moreover, our attack method is efficient, capable of synthesizing a malicious distilled dataset in under one minute in certain cases.
Abstract:Smartphones have become indispensable in modern life, yet navigating complex tasks on mobile devices often remains frustrating. Recent advancements in large multimodal model (LMM)-based mobile agents have demonstrated the ability to perceive and act in mobile environments. However, current approaches face significant limitations: they fall short in addressing real-world human needs, struggle with reasoning-intensive and long-horizon tasks, and lack mechanisms to learn and improve from prior experiences. To overcome these challenges, we introduce Mobile-Agent-E, a hierarchical multi-agent framework capable of self-evolution through past experience. By hierarchical, we mean an explicit separation of high-level planning and low-level action execution. The framework comprises a Manager, responsible for devising overall plans by breaking down complex tasks into subgoals, and four subordinate agents--Perceptor, Operator, Action Reflector, and Notetaker--which handle fine-grained visual perception, immediate action execution, error verification, and information aggregation, respectively. Mobile-Agent-E also features a novel self-evolution module which maintains a persistent long-term memory comprising Tips and Shortcuts. Tips are general guidance and lessons learned from prior tasks on how to effectively interact with the environment. Shortcuts are reusable, executable sequences of atomic operations tailored for specific subroutines. The inclusion of Tips and Shortcuts facilitates continuous refinement in performance and efficiency. Alongside this framework, we introduce Mobile-Eval-E, a new benchmark featuring complex mobile tasks requiring long-horizon, multi-app interactions. Empirical results show that Mobile-Agent-E achieves a 22% absolute improvement over previous state-of-the-art approaches across three foundation model backbones. Project page: https://x-plug.github.io/MobileAgent.
Abstract:As language models continue to scale, Large Language Models (LLMs) have exhibited emerging capabilities in In-Context Learning (ICL), enabling them to solve language tasks by prefixing a few in-context demonstrations (ICDs) as context. Inspired by these advancements, researchers have extended these techniques to develop Large Multimodal Models (LMMs) with ICL capabilities. However, existing LMMs face a critical issue: they often fail to effectively leverage the visual context in multimodal demonstrations and instead simply follow textual patterns. This indicates that LMMs do not achieve effective alignment between multimodal demonstrations and model outputs. To address this problem, we propose Symbol Demonstration Direct Preference Optimization (SymDPO). Specifically, SymDPO aims to break the traditional paradigm of constructing multimodal demonstrations by using random symbols to replace text answers within instances. This forces the model to carefully understand the demonstration images and establish a relationship between the images and the symbols to answer questions correctly. We validate the effectiveness of this method on multiple benchmarks, demonstrating that with SymDPO, LMMs can more effectively understand the multimodal context within examples and utilize this knowledge to answer questions better.
Abstract:Frequently updating Large Language Model (LLM)-based recommender systems to adapt to new user interests -- as done for traditional ones -- is impractical due to high training costs, even with acceleration methods. This work explores adapting to dynamic user interests without any model updates by leveraging In-Context Learning (ICL), which allows LLMs to learn new tasks from few-shot examples provided in the input. Using new-interest examples as the ICL few-shot examples, LLMs may learn real-time interest directly, avoiding the need for model updates. However, existing LLM-based recommenders often lose the in-context learning ability during recommendation tuning, while the original LLM's in-context learning lacks recommendation-specific focus. To address this, we propose RecICL, which customizes recommendation-specific in-context learning for real-time recommendations. RecICL organizes training examples in an in-context learning format, ensuring that in-context learning ability is preserved and aligned with the recommendation task during tuning. Extensive experiments demonstrate RecICL's effectiveness in delivering real-time recommendations without requiring model updates. Our code is available at https://github.com/ym689/rec_icl.
Abstract:Multi-modality (MM) semi-supervised learning (SSL) based medical image segmentation has recently gained increasing attention for its ability to utilize MM data and reduce reliance on labeled images. However, current methods face several challenges: (1) Complex network designs hinder scalability to scenarios with more than two modalities. (2) Focusing solely on modality-invariant representation while neglecting modality-specific features, leads to incomplete MM learning. (3) Leveraging unlabeled data with generative methods can be unreliable for SSL. To address these problems, we propose Double Bank Dual Consistency (DBDC), a novel MM-SSL approach for medical image segmentation. To address challenge (1), we propose a modality all-in-one segmentation network that accommodates data from any number of modalities, removing the limitation on modality count. To address challenge (2), we design two learnable plug-in banks, Modality-Level Modulation bank (MLMB) and Modality-Level Prototype (MLPB) bank, to capture both modality-invariant and modality-specific knowledge. These banks are updated using our proposed Modality Prototype Contrastive Learning (MPCL). Additionally, we design Modality Adaptive Weighting (MAW) to dynamically adjust learning weights for each modality, ensuring balanced MM learning as different modalities learn at different rates. Finally, to address challenge (3), we introduce a Dual Consistency (DC) strategy that enforces consistency at both the image and feature levels without relying on generative methods. We evaluate our method on a 2-to-4 modality segmentation task using three open-source datasets, and extensive experiments show that our method outperforms state-of-the-art approaches.
Abstract:Diffusion models demonstrate impressive image generation performance with text guidance. Inspired by the learning process of diffusion, existing images can be edited according to text by DDIM inversion. However, the vanilla DDIM inversion is not optimized for classifier-free guidance and the accumulated error will result in the undesired performance. While many algorithms are developed to improve the framework of DDIM inversion for editing, in this work, we investigate the approximation error in DDIM inversion and propose to disentangle the guidance scale for the source and target branches to reduce the error while keeping the original framework. Moreover, a better guidance scale (i.e., 0.5) than default settings can be derived theoretically. Experiments on PIE-Bench show that our proposal can improve the performance of DDIM inversion dramatically without sacrificing efficiency.
Abstract:Multimodel Large Language Models(MLLMs) have achieved promising OCR-free Document Understanding performance by increasing the supported resolution of document images. However, this comes at the cost of generating thousands of visual tokens for a single document image, leading to excessive GPU memory and slower inference times, particularly in multi-page document comprehension. In this work, to address these challenges, we propose a High-resolution DocCompressor module to compress each high-resolution document image into 324 tokens, guided by low-resolution global visual features. With this compression module, to strengthen multi-page document comprehension ability and balance both token efficiency and question-answering performance, we develop the DocOwl2 under a three-stage training framework: Single-image Pretraining, Multi-image Continue-pretraining, and Multi-task Finetuning. DocOwl2 sets a new state-of-the-art across multi-page document understanding benchmarks and reduces first token latency by more than 50%, demonstrating advanced capabilities in multi-page questioning answering, explanation with evidence pages, and cross-page structure understanding. Additionally, compared to single-image MLLMs trained on similar data, our DocOwl2 achieves comparable single-page understanding performance with less than 20% of the visual tokens. Our codes, models, and data are publicly available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/DocOwl2.
Abstract:This paper presents MaVEn, an innovative Multi-granularity Visual Encoding framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning. Current MLLMs primarily focus on single-image visual understanding, limiting their ability to interpret and integrate information across multiple images. MaVEn addresses this limitation by combining discrete visual symbol sequences, which abstract coarse-grained semantic concepts, with traditional continuous representation sequences that model fine-grained features. This dual approach bridges the semantic gap between visual and textual data, thereby improving the model's ability to process and interpret information from multiple images effectively. Additionally, we design a dynamic reduction mechanism by for long-sequence continuous features to enhance multi-image processing efficiency. Experimental results demonstrate that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
Abstract:While fusing the capacities and advantages of various large language models (LLMs) offers a pathway to construct more powerful and versatile models, a fundamental challenge is to properly select advantageous model during the training. Existing fusion methods primarily focus on the training mode that uses cross entropy on ground truth in a teacher-forcing setup to measure a model's advantage, which may provide limited insight towards model advantage. In this paper, we introduce a novel approach that enhances the fusion process by incorporating both the training and inference modes. Our method evaluates model advantage not only through cross entropy during training but also by considering inference outputs, providing a more comprehensive assessment. To combine the two modes effectively, we introduce ProFuser to progressively transition from inference mode to training mode. To validate ProFuser's effectiveness, we fused three models, including vicuna-7b-v1.5, Llama-2-7b-chat, and mpt-7b-8k-chat, and demonstrated the improved performance in knowledge, reasoning, and safety compared to baseline methods.