Abstract:We propose compleX-PINN, a novel physics-informed neural network (PINN) architecture that incorporates a learnable activation function inspired by Cauchy integral theorem. By learning the parameters of the activation function, compleX-PINN achieves high accuracy with just a single hidden layer. Empirical results show that compleX-PINN effectively solves problems where traditional PINNs struggle and consistently delivers significantly higher precision, often by an order of magnitude.
Abstract:We propose a new physics-informed neural network framework, IDPINN, based on the enhancement of initialization and domain decomposition to improve prediction accuracy. We train a PINN using a small dataset to obtain an initial network structure, including the weighted matrix and bias, which initializes the PINN for each subdomain. Moreover, we leverage the smoothness condition on the interface to enhance the prediction performance. We numerically evaluated it on several forward problems and demonstrated the benefits of IDPINN in terms of accuracy.