College of Business, City University of Hong Kong, Hong Kong, China
Abstract:Comprehensive panoramic scene understanding is critical for immersive applications, yet it remains challenging due to the scarcity of high-resolution, multi-task annotations. While perspective foundation models have achieved success through data scaling, directly adapting them to the panoramic domain often fails due to severe geometric distortions and coordinate system discrepancies. Furthermore, the underlying relations between diverse dense prediction tasks in spherical spaces are underexplored. To address these challenges, we propose MTPano, a robust multi-task panoramic foundation model established by a label-free training pipeline. First, to circumvent data scarcity, we leverage powerful perspective dense priors. We project panoramic images into perspective patches to generate accurate, domain-gap-free pseudo-labels using off-the-shelf foundation models, which are then re-projected to serve as patch-wise supervision. Second, to tackle the interference between task types, we categorize tasks into rotation-invariant (e.g., depth, segmentation) and rotation-variant (e.g., surface normals) groups. We introduce the Panoramic Dual BridgeNet, which disentangles these feature streams via geometry-aware modulation layers that inject absolute position and ray direction priors. To handle the distortion from equirectangular projections (ERP), we incorporate ERP token mixers followed by a dual-branch BridgeNet for interactions with gradient truncation, facilitating beneficial cross-task information sharing while blocking conflicting gradients from incompatible task attributes. Additionally, we introduce auxiliary tasks (image gradient, point map, etc.) to fertilize the cross-task learning process. Extensive experiments demonstrate that MTPano achieves state-of-the-art performance on multiple benchmarks and delivers competitive results against task-specific panoramic specialist foundation models.
Abstract:Model-based reinforcement learning (MBRL) achieves high sample efficiency by simulating future trajectories with learned dynamics and reward models. However, its effectiveness is severely compromised in sparse reward settings. The core limitation lies in the standard paradigm of regressing ground-truth scalar rewards: in sparse environments, this yields a flat, gradient-free landscape that fails to provide directional guidance for planning. To address this challenge, we propose Shaping Landscapes with Optimistic Potential Estimates (SLOPE), a novel framework that shifts reward modeling from predicting scalars to constructing informative potential landscapes. SLOPE employs optimistic distributional regression to estimate high-confidence upper bounds, which amplifies rare success signals and ensures sufficient exploration gradients. Evaluations on 30+ tasks across 5 benchmarks demonstrate that SLOPE consistently outperforms leading baselines in fully sparse, semi-sparse, and dense rewards.
Abstract:While open sourced Vision-Language Models (VLMs) have proliferated, selecting the optimal pretrained model for a specific downstream task remains challenging. Exhaustive evaluation is often infeasible due to computational constraints and data limitations in few shot scenarios. Existing selection methods fail to fully address this: they either rely on data-intensive proxies or use symmetric textual descriptors that neglect the inherently directional and model-specific nature of transferability. To address this problem, we propose a framework that grounds model selection in the internal functional dynamics of the visual encoder. Our approach represents each task via layer wise conductance and derives a target-conditioned block importance distribution through entropy regularized alignment. Building on this, we introduce Directional Conductance Divergence (DCD), an asymmetric metric that quantifies how effectively a source task covers the target's salient functional blocks. This allows for predicting target model rankings by aggregating source task ranks without direct inference. Experimental results on 48 VLMs across 21 datasets demonstrate that our method outperforms state-of-the-art baselines, achieving a 14.7% improvement in NDCG@5 over SWAB.
Abstract:Quantum phase transitions in many-body systems are fundamentally characterized by complex correlation structures, which pose computational challenges for conventional methods in large systems. To address this, we propose a hybrid quantum-classical attention model. This model uses an attention mechanism, realized through swap tests and a parameterized quantum circuit, to extract correlations within quantum states and perform ground-state classification. Benchmarked on the cluster-Ising model with system sizes of 9 and 15 qubits, the model achieves high classification accuracy with less than 100 training data and demonstrates robustness against variations in the training set. Further analysis reveals that the model successfully captures phase-sensitive features and characteristic physical length scales, offering a scalable and data-efficient approach for quantum phase recognition in complex many-body systems.
Abstract:Large Language Models (LLMs) have recently improved mathematical reasoning through Reinforcement Learning with Verifiable Reward (RLVR). However, existing RLVR algorithms require large query budgets, making annotation costly. We investigate whether fewer but more informative queries can yield similar or superior performance, introducing active learning (AL) into RLVR. We identify that classic AL sampling strategies fail to outperform random selection in this setting, due to ignoring objective uncertainty when only selecting by subjective uncertainty. This work proposes an uncertainty consistency metric to evaluate how well subjective uncertainty aligns with objective uncertainty. In the offline setting, this alignment is measured using the Point-Biserial Correlation Coefficient (PBC). For online training, because of limited sampling and dynamically shifting output distributions, PBC estimation is difficult. Therefore, we introduce a new online variant, computed from normalized advantage and subjective uncertainty. Theoretically, we prove that the online variant is strictly negatively correlated with offline PBC and supports better sample selection. Experiments show our method consistently outperforms random and classic AL baselines, achieving full-dataset performance while training on only 30% of the data, effectively reducing the cost of RLVR for reasoning tasks.
Abstract:The reinforcement fine-tuning area is undergoing an explosion papers largely on optimizing design choices. Though performance gains are often claimed, inconsistent conclusions also arise from time to time, making the progress illusive. Reflecting on this illusion, we still lack principled answers to two fundamental questions: 1) what is the role of each design choice? 2) which ones are critical? This paper aims to shed light on them. The underlying challenge is that design choices are entangled together, making their contribution to learning and generalization difficult to attribute. To address this challenge, we first construct a minimalist baseline for disentangling factors: one rollout per query in each round, the outcome reward serving as the training signal without any advantage trick, and a batch size of thirty-two. This baseline connects to batched contextual bandit learning, which facilitates experimental analysis. Centering around this baseline, we design an experiment pipeline, examining the marginal gains of factors like advantage, number of rollouts, etc. Experiments on three base models and two datasets, not only reveal new understanding on the role of various design choices on learning and generalization dynamics, but also identify critical ones that deserve more effort.
Abstract:Despite strong performance on existing benchmarks, it remains unclear whether large language models can reason over genuinely novel scientific information. Most evaluations score end-to-end RAG pipelines, where reasoning is confounded with retrieval and toolchain choices, and the signal is further contaminated by parametric memorization and open-web volatility. We introduce DeR2, a controlled deep-research sandbox that isolates document-grounded reasoning while preserving core difficulties of deep search: multi-step synthesis, denoising, and evidence-based conclusion making. DeR2 decouples evidence access from reasoning via four regimes--Instruction-only, Concepts (gold concepts without documents), Related-only (only relevant documents), and Full-set (relevant documents plus topically related distractors)--yielding interpretable regime gaps that operationalize retrieval loss vs. reasoning loss and enable fine-grained error attribution. To prevent parametric leakage, we apply a two-phase validation that requires parametric failure without evidence while ensuring oracle-concept solvability. To ensure reproducibility, each instance provides a frozen document library (drawn from 2023-2025 theoretical papers) with expert-annotated concepts and validated rationales. Experiments across a diverse set of state-of-the-art foundation models reveal substantial variation and significant headroom: some models exhibit mode-switch fragility, performing worse with the Full-set than with Instruction-only, while others show structural concept misuse, correctly naming concepts but failing to execute them as procedures.
Abstract:This paper presents Youtu-Parsing, an efficient and versatile document parsing model designed for high-performance content extraction. The architecture employs a native Vision Transformer (ViT) featuring a dynamic-resolution visual encoder to extract shared document features, coupled with a prompt-guided Youtu-LLM-2B language model for layout analysis and region-prompted decoding. Leveraging this decoupled and feature-reusable framework, we introduce a high-parallelism decoding strategy comprising two core components: token parallelism and query parallelism. The token parallelism strategy concurrently generates up to 64 candidate tokens per inference step, which are subsequently validated through a verification mechanism. This approach yields a 5--11x speedup over traditional autoregressive decoding and is particularly well-suited for highly structured scenarios, such as table recognition. To further exploit the advantages of region-prompted decoding, the query parallelism strategy enables simultaneous content prediction for multiple bounding boxes (up to five), providing an additional 2x acceleration while maintaining output quality equivalent to standard decoding. Youtu-Parsing encompasses a diverse range of document elements, including text, formulas, tables, charts, seals, and hierarchical structures. Furthermore, the model exhibits strong robustness when handling rare characters, multilingual text, and handwritten content. Extensive evaluations demonstrate that Youtu-Parsing achieves state-of-the-art (SOTA) performance on both the OmniDocBench and olmOCR-bench benchmarks. Overall, Youtu-Parsing demonstrates significant experimental value and practical utility for large-scale document intelligence applications.
Abstract:Despite the significant advancements represented by Vision-Language Models (VLMs), current architectures often exhibit limitations in retaining fine-grained visual information, leading to coarse-grained multimodal comprehension. We attribute this deficiency to a suboptimal training paradigm inherent in prevailing VLMs, which exhibits a text-dominant optimization bias by conceptualizing visual signals merely as passive conditional inputs rather than supervisory targets. To mitigate this, we introduce Youtu-VL, a framework leveraging the Vision-Language Unified Autoregressive Supervision (VLUAS) paradigm, which fundamentally shifts the optimization objective from ``vision-as-input'' to ``vision-as-target.'' By integrating visual tokens directly into the prediction stream, Youtu-VL applies unified autoregressive supervision to both visual details and linguistic content. Furthermore, we extend this paradigm to encompass vision-centric tasks, enabling a standard VLM to perform vision-centric tasks without task-specific additions. Extensive empirical evaluations demonstrate that Youtu-VL achieves competitive performance on both general multimodal tasks and vision-centric tasks, establishing a robust foundation for the development of comprehensive generalist visual agents.
Abstract:Open-vocabulary semantic segmentation aims to assign labels to every pixel in an image based on text labels. Existing approaches typically utilize vision-language models (VLMs), such as CLIP, for dense prediction. However, VLMs, pre-trained on image-text pairs, are biased toward salient, object-centric regions and exhibit two critical limitations when adapted to segmentation: (i) Foreground Bias, which tends to ignore background regions, and (ii) Limited Spatial Localization, resulting in blurred object boundaries. To address these limitations, we introduce DiSa, a novel saliency-aware foreground-background disentangled framework. By explicitly incorporating saliency cues in our designed Saliency-aware Disentanglement Module (SDM), DiSa separately models foreground and background ensemble features in a divide-and-conquer manner. Additionally, we propose a Hierarchical Refinement Module (HRM) that leverages pixel-wise spatial contexts and enables channel-wise feature refinement through multi-level updates. Extensive experiments on six benchmarks demonstrate that DiSa consistently outperforms state-of-the-art methods.