Abstract:Many contrastive learning based models have achieved advanced performance in image-text matching tasks. The key of these models lies in analyzing the correlation between image-text pairs, which involves cross-modal interaction of embeddings in corresponding dimensions. However, the embeddings of different modalities are from different models or modules, and there is a significant modality gap. Directly interacting such embeddings lacks rationality and may capture inaccurate correlation. Therefore, we propose a novel method called DIAS to bridge the modality gap from two aspects: (1) We align the information representation of embeddings from different modalities in corresponding dimension to ensure the correlation calculation is based on interactions of similar information. (2) The spatial constraints of inter- and intra-modalities unmatched pairs are introduced to ensure the effectiveness of semantic alignment of the model. Besides, a sparse correlation algorithm is proposed to select strong correlated spatial relationships, enabling the model to learn more significant features and avoid being misled by weak correlation. Extensive experiments demonstrate the superiority of DIAS, achieving 4.3\%-10.2\% rSum improvements on Flickr30k and MSCOCO benchmarks.
Abstract:Time series forecasting is a crucial task in various domains. Caused by factors such as trends, seasonality, or irregular fluctuations, time series often exhibits non-stationary. It obstructs stable feature propagation through deep layers, disrupts feature distributions, and complicates learning data distribution changes. As a result, many existing models struggle to capture the underlying patterns, leading to degraded forecasting performance. In this study, we tackle the challenge of non-stationarity in time series forecasting with our proposed framework called U-Mixer. By combining Unet and Mixer, U-Mixer effectively captures local temporal dependencies between different patches and channels separately to avoid the influence of distribution variations among channels, and merge low- and high-levels features to obtain comprehensive data representations. The key contribution is a novel stationarity correction method, explicitly restoring data distribution by constraining the difference in stationarity between the data before and after model processing to restore the non-stationarity information, while ensuring the temporal dependencies are preserved. Through extensive experiments on various real-world time series datasets, U-Mixer demonstrates its effectiveness and robustness, and achieves 14.5\% and 7.7\% improvements over state-of-the-art (SOTA) methods.
Abstract:Establishing accurate and representative matches is a crucial step in addressing the point cloud registration problem. A commonly employed approach involves detecting keypoints with salient geometric features and subsequently mapping these keypoints from one frame of the point cloud to another. However, methods within this category are hampered by the repeatability of the sampled keypoints. In this paper, we introduce a saliency-guided trans\textbf{former}, referred to as \textit{D3Former}, which entails the joint learning of repeatable \textbf{D}ense \textbf{D}etectors and feature-enhanced \textbf{D}escriptors. The model comprises a Feature Enhancement Descriptor Learning (FEDL) module and a Repetitive Keypoints Detector Learning (RKDL) module. The FEDL module utilizes a region attention mechanism to enhance feature distinctiveness, while the RKDL module focuses on detecting repeatable keypoints to enhance matching capabilities. Extensive experimental results on challenging indoor and outdoor benchmarks demonstrate that our proposed method consistently outperforms state-of-the-art point cloud matching methods. Notably, tests on 3DLoMatch, even with a low overlap ratio, show that our method consistently outperforms recently published approaches such as RoReg and RoITr. For instance, with the number of extracted keypoints reduced to 250, the registration recall scores for RoReg, RoITr, and our method are 64.3\%, 73.6\%, and 76.5\%, respectively.
Abstract:Recent multi-view subspace clustering achieves impressive results utilizing deep networks, where the self-expressive correlation is typically modeled by a fully connected (FC) layer. However, they still suffer from two limitations: i) it is under-explored to extract a unified representation from multiple views that simultaneously satisfy minimal sufficiency and discriminability. ii) the parameter scale of the FC layer is quadratic to the number of samples, resulting in high time and memory costs that significantly degrade their feasibility in large-scale datasets. In light of this, we propose a novel deep framework termed Efficient and Effective Large-scale Multi-View Subspace Clustering (E$^2$LMVSC). Specifically, to enhance the quality of the unified representation, a soft clustering assignment similarity constraint is devised for explicitly decoupling consistent, complementary, and superfluous information across multi-view data. Then, following information bottleneck theory, a sufficient yet minimal unified feature representation is obtained. Moreover, E$^2$LMVSC employs the maximal coding rate reduction principle to promote intra-cluster aggregation and inter-cluster separability within the unified representation. Finally, the self-expressive coefficients are learned by a Relation-Metric Net instead of a parameterized FC layer for greater efficiency. Extensive experiments show that E$^2$LMVSC yields comparable results to existing methods and achieves state-of-the-art clustering performance in large-scale multi-view datasets.
Abstract:Time series forecasting has received wide interest from existing research due to its broad applications and inherent challenging. The research challenge lies in identifying effective patterns in historical series and applying them to future forecasting. Advanced models based on point-wise connected MLP and Transformer architectures have strong fitting power, but their secondary computational complexity limits practicality. Additionally, those structures inherently disrupt the temporal order, reducing the information utilization and making the forecasting process uninterpretable. To solve these problems, this paper proposes a forecasting model, MPR-Net. It first adaptively decomposes multi-scale historical series patterns using convolution operation, then constructs a pattern extension forecasting method based on the prior knowledge of pattern reproduction, and finally reconstructs future patterns into future series using deconvolution operation. By leveraging the temporal dependencies present in the time series, MPR-Net not only achieves linear time complexity, but also makes the forecasting process interpretable. By carrying out sufficient experiments on more than ten real data sets of both short and long term forecasting tasks, MPR-Net achieves the state of the art forecasting performance, as well as good generalization and robustness performance.
Abstract:Tensor robust principal component analysis (TRPCA) is a promising way for low-rank tensor recovery, which minimizes the convex surrogate of tensor rank by shrinking each tensor singular values equally. However, for real-world visual data, large singular values represent more signifiant information than small singular values. In this paper, we propose a nonconvex TRPCA (N-TRPCA) model based on the tensor adjustable logarithmic norm. Unlike TRPCA, our N-TRPCA can adaptively shrink small singular values more and shrink large singular values less. In addition, TRPCA assumes that the whole data tensor is of low rank. This assumption is hardly satisfied in practice for natural visual data, restricting the capability of TRPCA to recover the edges and texture details from noisy images and videos. To this end, we integrate nonlocal self-similarity into N-TRPCA, and further develop a nonconvex and nonlocal TRPCA (NN-TRPCA) model. Specifically, similar nonlocal patches are grouped as a tensor and then each group tensor is recovered by our N-TRPCA. Since the patches in one group are highly correlated, all group tensors have strong low-rank property, leading to an improvement of recovery performance. Experimental results demonstrate that the proposed NN-TRPCA outperforms some existing TRPCA methods in visual data recovery. The demo code is available at https://github.com/qguo2010/NN-TRPCA.
Abstract:Despite their outstanding accuracy, semi-supervised segmentation methods based on deep neural networks can still yield predictions that are considered anatomically impossible by clinicians, for instance, containing holes or disconnected regions. To solve this problem, we present a Context-aware Virtual Adversarial Training (CaVAT) method for generating anatomically plausible segmentation. Unlike approaches focusing solely on accuracy, our method also considers complex topological constraints like connectivity which cannot be easily modeled in a differentiable loss function. We use adversarial training to generate examples violating the constraints, so the network can learn to avoid making such incorrect predictions on new examples, and employ the Reinforce algorithm to handle non-differentiable segmentation constraints. The proposed method offers a generic and efficient way to add any constraint on top of any segmentation network. Experiments on two clinically-relevant datasets show our method to produce segmentations that are both accurate and anatomically-plausible in terms of region connectivity.
Abstract:Deep co-training has recently been proposed as an effective approach for image segmentation when annotated data is scarce. In this paper, we improve existing approaches for semi-supervised segmentation with a self-paced and self-consistent co-training method. To help distillate information from unlabeled images, we first design a self-paced learning strategy for co-training that lets jointly-trained neural networks focus on easier-to-segment regions first, and then gradually consider harder ones.This is achieved via an end-to-end differentiable loss inthe form of a generalized Jensen Shannon Divergence(JSD). Moreover, to encourage predictions from different networks to be both consistent and confident, we enhance this generalized JSD loss with an uncertainty regularizer based on entropy. The robustness of individual models is further improved using a self-ensembling loss that enforces their prediction to be consistent across different training iterations. We demonstrate the potential of our method on three challenging image segmentation problems with different image modalities, using small fraction of labeled data. Results show clear advantages in terms of performance compared to the standard co-training baselines and recently proposed state-of-the-art approaches for semi-supervised segmentation
Abstract:Cognitive decline due to Alzheimer's disease (AD) is closely associated with brain structure alterations captured by structural magnetic resonance imaging (sMRI). It supports the validity to develop sMRI-based univariate neurodegeneration biomarkers (UNB). However, existing UNB work either fails to model large group variances or does not capture AD dementia (ADD) induced changes. We propose a novel low-rank and sparse subspace decomposition method capable of stably quantifying the morphological changes induced by ADD. Specifically, we propose a numerically efficient rank minimization mechanism to extract group common structure and impose regularization constraints to encode the original 3D morphometry connectivity. Further, we generate regions-of-interest (ROI) with group difference study between common subspaces of $A\beta+$ AD and $A\beta-$ cognitively unimpaired (CU) groups. A univariate morphometry index (UMI) is constructed from these ROIs by summarizing individual morphological characteristics weighted by normalized difference between $A\beta+$ AD and $A\beta-$ CU groups. We use hippocampal surface radial distance feature to compute the UMIs and validate our work in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. With hippocampal UMIs, the estimated minimum sample sizes needed to detect a 25$\%$ reduction in the mean annual change with 80$\%$ power and two-tailed $P=0.05$ are 116, 279 and 387 for the longitudinal $A\beta+$ AD, $A\beta+$ mild cognitive impairment (MCI) and $A\beta+$ CU groups, respectively. Additionally, for MCI patients, UMIs well correlate with hazard ratio of conversion to AD ($4.3$, $95\%$ CI=$2.3-8.2$) within 18 months. Our experimental results outperform traditional hippocampal volume measures and suggest the application of UMI as a potential UNB.
Abstract:Optical fringe patterns are often contaminated by speckle noise, making it difficult to accurately and robustly extract their phase fields. Thereupon we propose a filtering method based on deep learning, called optical fringe patterns denoising convolutional neural network (FPD-CNN), for directly removing speckle from the input noisy fringe patterns. The FPD-CNN method is divided into multiple stages, each stage consists of a set of convolutional layers along with batch normalization and leaky rectified linear unit (Leaky ReLU) activation function. The end-to-end joint training is carried out using the Euclidean loss. Extensive experiments on simulated and experimental optical fringe patterns, specially finer ones with high density, show that the proposed method is superior to some state-of-the-art denoising techniques in spatial or transform domains, efficiently preserving main features of fringe at a fairly fast speed.