Abstract:Deep learning has achieved significant advancements in medical image segmentation, but existing models still face challenges in accurately segmenting lesion regions. The main reason is that some lesion regions in medical images have unclear boundaries, irregular shapes, and small tissue density differences, leading to label ambiguity. However, the existing model treats all data equally without taking quality differences into account in the training process, resulting in noisy labels negatively impacting model training and unstable feature representations. In this paper, a data-driven alternating learning (DALE) paradigm is proposed to optimize the model's training process, achieving stable and high-precision segmentation. The paradigm focuses on two key points: (1) reducing the impact of noisy labels, and (2) calibrating unstable representations. To mitigate the negative impact of noisy labels, a loss consistency-based collaborative optimization method is proposed, and its effectiveness is theoretically demonstrated. Specifically, the label confidence parameters are introduced to dynamically adjust the influence of labels of different confidence levels during model training, thus reducing the influence of noise labels. To calibrate the learning bias of unstable representations, a distribution alignment method is proposed. This method restores the underlying distribution of unstable representations, thereby enhancing the discriminative capability of fuzzy region representations. Extensive experiments on various benchmarks and model backbones demonstrate the superiority of the DALE paradigm, achieving an average performance improvement of up to 7.16%.
Abstract:Many contrastive learning based models have achieved advanced performance in image-text matching tasks. The key of these models lies in analyzing the correlation between image-text pairs, which involves cross-modal interaction of embeddings in corresponding dimensions. However, the embeddings of different modalities are from different models or modules, and there is a significant modality gap. Directly interacting such embeddings lacks rationality and may capture inaccurate correlation. Therefore, we propose a novel method called DIAS to bridge the modality gap from two aspects: (1) We align the information representation of embeddings from different modalities in corresponding dimension to ensure the correlation calculation is based on interactions of similar information. (2) The spatial constraints of inter- and intra-modalities unmatched pairs are introduced to ensure the effectiveness of semantic alignment of the model. Besides, a sparse correlation algorithm is proposed to select strong correlated spatial relationships, enabling the model to learn more significant features and avoid being misled by weak correlation. Extensive experiments demonstrate the superiority of DIAS, achieving 4.3\%-10.2\% rSum improvements on Flickr30k and MSCOCO benchmarks.
Abstract:Time series forecasting is a crucial task in various domains. Caused by factors such as trends, seasonality, or irregular fluctuations, time series often exhibits non-stationary. It obstructs stable feature propagation through deep layers, disrupts feature distributions, and complicates learning data distribution changes. As a result, many existing models struggle to capture the underlying patterns, leading to degraded forecasting performance. In this study, we tackle the challenge of non-stationarity in time series forecasting with our proposed framework called U-Mixer. By combining Unet and Mixer, U-Mixer effectively captures local temporal dependencies between different patches and channels separately to avoid the influence of distribution variations among channels, and merge low- and high-levels features to obtain comprehensive data representations. The key contribution is a novel stationarity correction method, explicitly restoring data distribution by constraining the difference in stationarity between the data before and after model processing to restore the non-stationarity information, while ensuring the temporal dependencies are preserved. Through extensive experiments on various real-world time series datasets, U-Mixer demonstrates its effectiveness and robustness, and achieves 14.5\% and 7.7\% improvements over state-of-the-art (SOTA) methods.