Abstract:Test-Time Adaptation (TTA) addresses distribution shifts during testing by adapting a pretrained model without access to source data. In this work, we propose a novel TTA approach for 3D point cloud classification, combining sampling variation with weight averaging. Our method leverages Farthest Point Sampling (FPS) and K-Nearest Neighbors (KNN) to create multiple point cloud representations, adapting the model for each variation using the TENT algorithm. The final model parameters are obtained by averaging the adapted weights, leading to improved robustness against distribution shifts. Extensive experiments on ModelNet40-C, ShapeNet-C, and ScanObjectNN-C datasets, with different backbones (Point-MAE, PointNet, DGCNN), demonstrate that our approach consistently outperforms existing methods while maintaining minimal resource overhead. The proposed method effectively enhances model generalization and stability in challenging real-world conditions.
Abstract:Foundation models such as the recently introduced Segment Anything Model (SAM) have achieved remarkable results in image segmentation tasks. However, these models typically require user interaction through handcrafted prompts such as bounding boxes, which limits their deployment to downstream tasks. Adapting these models to a specific task with fully labeled data also demands expensive prior user interaction to obtain ground-truth annotations. This work proposes to replace conditioning on input prompts with a lightweight module that directly learns a prompt embedding from the image embedding, both of which are subsequently used by the foundation model to output a segmentation mask. Our foundation models with learnable prompts can automatically segment any specific region by 1) modifying the input through a prompt embedding predicted by a simple module, and 2) using weak labels (tight bounding boxes) and few-shot supervision (10 samples). Our approach is validated on MedSAM, a version of SAM fine-tuned for medical images, with results on three medical datasets in MR and ultrasound imaging. Our code is available on https://github.com/Minimel/MedSAMWeakFewShotPromptAutomation.
Abstract:Standard deep learning architectures such as convolutional neural networks and vision transformers often fail to generalize to previously unseen domains due to the implicit assumption that both source and target data are drawn from independent and identically distributed (i.i.d.) populations. In response, Domain Generalization techniques aim to enhance model robustness by simulating novel data distributions during training, typically through various augmentation or stylization strategies. However, these methods frequently suffer from limited control over the diversity of generated images and lack assurance that these images span distinct distributions. To address these challenges, we propose FDS, a novel strategy that employs diffusion models to synthesize samples from new domains by training on source distribution samples and performing domain mixing. By incorporating images that pose classification challenges to models trained on original samples, alongside the original dataset, we ensure the generation of a training set that spans a broad distribution spectrum. Our comprehensive evaluations demonstrate that this methodology sets new benchmarks in domain generalization performance across a range of challenging datasets, effectively managing diverse types of domain shifts. The implementation is available at: \url{https://github.com/Mehrdad-Noori/FDS.git}.
Abstract:Vision-Language Models (VLMs) such as CLIP have yielded unprecedented performance for zero-shot image classification, yet their generalization capability may still be seriously challenged when confronted to domain shifts. In response, we present Weight Average Test-Time Adaptation (WATT) of CLIP, a pioneering approach facilitating full test-time adaptation (TTA) of this VLM. Our method employs a diverse set of templates for text prompts, augmenting the existing framework of CLIP. Predictions are utilized as pseudo labels for model updates, followed by weight averaging to consolidate the learned information globally. Furthermore, we introduce a text ensemble strategy, enhancing overall test performance by aggregating diverse textual cues. Our findings underscore the efficacy of WATT in enhancing performance across diverse datasets, including CIFAR-10-C, CIFAR-10.1, CIFAR-100-C, VisDA-C, and several other challenging datasets, effectively covering a wide range of domain shifts. Notably, these enhancements are achieved without necessitating additional model transformations or trainable modules. Moreover, compared to other Test-Time Adaptation methods, our approach can operate effectively with just a single image. Highlighting the potential of innovative test-time strategies, this research emphasizes their role in fortifying the adaptability of VLMs. The implementation is available at: \url{https://github.com/Mehrdad-Noori/WATT.git}.
Abstract:Vision-Language Models (VLMs) such as CLIP have yielded unprecedented performance for zero-shot image classification, yet their generalization capability may still be seriously challenged when confronted to domain shifts. In response, we present Weight Average Test-Time Adaptation (WATT) of CLIP, a pioneering approach facilitating full test-time adaptation (TTA) of this VLM. Our method employs a diverse set of templates for text prompts, augmenting the existing framework of CLIP. Predictions are utilized as pseudo labels for model updates, followed by weight averaging to consolidate the learned information globally. Furthermore, we introduce a text ensemble strategy, enhancing overall test performance by aggregating diverse textual cues. Our findings underscore the efficacy of WATT in enhancing performance across diverse datasets, including CIFAR-10-C, CIFAR-10.1, CIFAR-100-C, VisDA-C, and several other challenging datasets, effectively covering a wide range of domain shifts. Notably, these enhancements are achieved without necessitating additional model transformations or trainable modules. Moreover, compared to other Test-Time Adaptation methods, our approach can operate effectively with just a single image. Highlighting the potential of innovative test-time strategies, this research emphasizes their role in fortifying the adaptability of VLMs. The implementation is available at: \url{https://github.com/Mehrdad-Noori/WATT.git}.
Abstract:We introduce a pioneering approach to self-supervised learning for point clouds, employing a geometrically informed mask selection strategy called GeoMask3D (GM3D) to boost the efficiency of Masked Auto Encoders (MAE). Unlike the conventional method of random masking, our technique utilizes a teacher-student model to focus on intricate areas within the data, guiding the model's focus toward regions with higher geometric complexity. This strategy is grounded in the hypothesis that concentrating on harder patches yields a more robust feature representation, as evidenced by the improved performance on downstream tasks. Our method also presents a complete-to-partial feature-level knowledge distillation technique designed to guide the prediction of geometric complexity utilizing a comprehensive context from feature-level information. Extensive experiments confirm our method's superiority over State-Of-The-Art (SOTA) baselines, demonstrating marked improvements in classification, and few-shot tasks.
Abstract:Pre-trained vision-language models (VLMs), exemplified by CLIP, demonstrate remarkable adaptability across zero-shot classification tasks without additional training. However, their performance diminishes in the presence of domain shifts. In this study, we introduce CLIP Adaptation duRing Test-Time (CLIPArTT), a fully test-time adaptation (TTA) approach for CLIP, which involves automatic text prompts construction during inference for their use as text supervision. Our method employs a unique, minimally invasive text prompt tuning process, wherein multiple predicted classes are aggregated into a single new text prompt, used as pseudo label to re-classify inputs in a transductive manner. Additionally, we pioneer the standardization of TTA benchmarks (e.g., TENT) in the realm of VLMs. Our findings demonstrate that, without requiring additional transformations nor new trainable modules, CLIPArTT enhances performance dynamically across non-corrupted datasets such as CIFAR-10, corrupted datasets like CIFAR-10-C and CIFAR-10.1, alongside synthetic datasets such as VisDA-C. This research underscores the potential for improving VLMs' adaptability through novel test-time strategies, offering insights for robust performance across varied datasets and environments. The code can be found at: https://github.com/dosowiechi/CLIPArTT.git
Abstract:Despite their exceptional performance in vision tasks, deep learning models often struggle when faced with domain shifts during testing. Test-Time Training (TTT) methods have recently gained popularity by their ability to enhance the robustness of models through the addition of an auxiliary objective that is jointly optimized with the main task. Being strictly unsupervised, this auxiliary objective is used at test time to adapt the model without any access to labels. In this work, we propose Noise-Contrastive Test-Time Training (NC-TTT), a novel unsupervised TTT technique based on the discrimination of noisy feature maps. By learning to classify noisy views of projected feature maps, and then adapting the model accordingly on new domains, classification performance can be recovered by an important margin. Experiments on several popular test-time adaptation baselines demonstrate the advantages of our method compared to recent approaches for this task. The code can be found at:https://github.com/GustavoVargasHakim/NCTTT.git
Abstract:With the increasing demand for audiovisual services, telecom service providers and application developers are compelled to ensure that their services provide the best possible user experience. Particularly, services such as videoconferencing are very sensitive to network conditions. Therefore, their performance should be monitored in real time in order to adjust parameters to any network perturbation. In this paper, we developed a parametric model for estimating the perceived audiovisual quality in videoconference services. Our model is developed with the nonlinear autoregressive exogenous (NARX) recurrent neural network and estimates the perceived quality in terms of mean opinion score (MOS). We validate our model using the publicly available INRS bitstream audiovisual quality dataset. This dataset contains bitstream parameters such as loss per frame, bit rate and video duration. We compare the proposed model against state-of-the-art methods based on machine learning and show our model to outperform these methods in terms of mean square error (MSE=0.150) and Pearson correlation coefficient (R=0.931)
Abstract:Deep Learning models have shown remarkable performance in a broad range of vision tasks. However, they are often vulnerable against domain shifts at test-time. Test-time training (TTT) methods have been developed in an attempt to mitigate these vulnerabilities, where a secondary task is solved at training time simultaneously with the main task, to be later used as an self-supervised proxy task at test-time. In this work, we propose a novel unsupervised TTT technique based on the maximization of Mutual Information between multi-scale feature maps and a discrete latent representation, which can be integrated to the standard training as an auxiliary clustering task. Experimental results demonstrate competitive classification performance on different popular test-time adaptation benchmarks.