Abstract:Standard deep learning architectures such as convolutional neural networks and vision transformers often fail to generalize to previously unseen domains due to the implicit assumption that both source and target data are drawn from independent and identically distributed (i.i.d.) populations. In response, Domain Generalization techniques aim to enhance model robustness by simulating novel data distributions during training, typically through various augmentation or stylization strategies. However, these methods frequently suffer from limited control over the diversity of generated images and lack assurance that these images span distinct distributions. To address these challenges, we propose FDS, a novel strategy that employs diffusion models to synthesize samples from new domains by training on source distribution samples and performing domain mixing. By incorporating images that pose classification challenges to models trained on original samples, alongside the original dataset, we ensure the generation of a training set that spans a broad distribution spectrum. Our comprehensive evaluations demonstrate that this methodology sets new benchmarks in domain generalization performance across a range of challenging datasets, effectively managing diverse types of domain shifts. The implementation is available at: \url{https://github.com/Mehrdad-Noori/FDS.git}.
Abstract:Vision-Language Models (VLMs) such as CLIP have yielded unprecedented performance for zero-shot image classification, yet their generalization capability may still be seriously challenged when confronted to domain shifts. In response, we present Weight Average Test-Time Adaptation (WATT) of CLIP, a pioneering approach facilitating full test-time adaptation (TTA) of this VLM. Our method employs a diverse set of templates for text prompts, augmenting the existing framework of CLIP. Predictions are utilized as pseudo labels for model updates, followed by weight averaging to consolidate the learned information globally. Furthermore, we introduce a text ensemble strategy, enhancing overall test performance by aggregating diverse textual cues. Our findings underscore the efficacy of WATT in enhancing performance across diverse datasets, including CIFAR-10-C, CIFAR-10.1, CIFAR-100-C, VisDA-C, and several other challenging datasets, effectively covering a wide range of domain shifts. Notably, these enhancements are achieved without necessitating additional model transformations or trainable modules. Moreover, compared to other Test-Time Adaptation methods, our approach can operate effectively with just a single image. Highlighting the potential of innovative test-time strategies, this research emphasizes their role in fortifying the adaptability of VLMs. The implementation is available at: \url{https://github.com/Mehrdad-Noori/WATT.git}.
Abstract:Vision-Language Models (VLMs) such as CLIP have yielded unprecedented performance for zero-shot image classification, yet their generalization capability may still be seriously challenged when confronted to domain shifts. In response, we present Weight Average Test-Time Adaptation (WATT) of CLIP, a pioneering approach facilitating full test-time adaptation (TTA) of this VLM. Our method employs a diverse set of templates for text prompts, augmenting the existing framework of CLIP. Predictions are utilized as pseudo labels for model updates, followed by weight averaging to consolidate the learned information globally. Furthermore, we introduce a text ensemble strategy, enhancing overall test performance by aggregating diverse textual cues. Our findings underscore the efficacy of WATT in enhancing performance across diverse datasets, including CIFAR-10-C, CIFAR-10.1, CIFAR-100-C, VisDA-C, and several other challenging datasets, effectively covering a wide range of domain shifts. Notably, these enhancements are achieved without necessitating additional model transformations or trainable modules. Moreover, compared to other Test-Time Adaptation methods, our approach can operate effectively with just a single image. Highlighting the potential of innovative test-time strategies, this research emphasizes their role in fortifying the adaptability of VLMs. The implementation is available at: \url{https://github.com/Mehrdad-Noori/WATT.git}.
Abstract:We introduce a pioneering approach to self-supervised learning for point clouds, employing a geometrically informed mask selection strategy called GeoMask3D (GM3D) to boost the efficiency of Masked Auto Encoders (MAE). Unlike the conventional method of random masking, our technique utilizes a teacher-student model to focus on intricate areas within the data, guiding the model's focus toward regions with higher geometric complexity. This strategy is grounded in the hypothesis that concentrating on harder patches yields a more robust feature representation, as evidenced by the improved performance on downstream tasks. Our method also presents a complete-to-partial feature-level knowledge distillation technique designed to guide the prediction of geometric complexity utilizing a comprehensive context from feature-level information. Extensive experiments confirm our method's superiority over State-Of-The-Art (SOTA) baselines, demonstrating marked improvements in classification, and few-shot tasks.
Abstract:Pre-trained vision-language models (VLMs), exemplified by CLIP, demonstrate remarkable adaptability across zero-shot classification tasks without additional training. However, their performance diminishes in the presence of domain shifts. In this study, we introduce CLIP Adaptation duRing Test-Time (CLIPArTT), a fully test-time adaptation (TTA) approach for CLIP, which involves automatic text prompts construction during inference for their use as text supervision. Our method employs a unique, minimally invasive text prompt tuning process, wherein multiple predicted classes are aggregated into a single new text prompt, used as pseudo label to re-classify inputs in a transductive manner. Additionally, we pioneer the standardization of TTA benchmarks (e.g., TENT) in the realm of VLMs. Our findings demonstrate that, without requiring additional transformations nor new trainable modules, CLIPArTT enhances performance dynamically across non-corrupted datasets such as CIFAR-10, corrupted datasets like CIFAR-10-C and CIFAR-10.1, alongside synthetic datasets such as VisDA-C. This research underscores the potential for improving VLMs' adaptability through novel test-time strategies, offering insights for robust performance across varied datasets and environments. The code can be found at: https://github.com/dosowiechi/CLIPArTT.git