ETS
Abstract:Recent advances in self-supervision and constrastive learning have brought the performance of foundation models to unprecedented levels in a variety of tasks. Fueled by this progress, these models are becoming the prevailing approach for a wide array of real-world vision problems, including risk-sensitive and high-stakes applications. However, ensuring safe deployment in these scenarios requires a more comprehensive understanding of their uncertainty modeling capabilities, which has been barely explored. In this work, we delve into the behavior of vision and vision-language foundation models under Conformal Prediction (CP), a statistical framework that provides theoretical guarantees of marginal coverage of the true class. Across extensive experiments including popular vision classification benchmarks, well-known foundation vision models, and three CP methods, our findings reveal that foundation models are well-suited for conformalization procedures, particularly those integrating Vision Transformers. Furthermore, we show that calibrating the confidence predictions of these models leads to efficiency degradation of the conformal set on adaptive CP methods. In contrast, few-shot adaptation to downstream tasks generally enhances conformal scores, where we identify Adapters as a better conformable alternative compared to Prompt Learning strategies. Our empirical study identifies APS as particularly promising in the context of vision foundation models, as it does not violate the marginal coverage property across multiple challenging, yet realistic scenarios.
Abstract:Vision-language foundation models, such as CLIP, have shown unprecedented zero-shot performance across a wide range of tasks. Nevertheless, these models may be unreliable under distributional shifts, as their performance is significantly degraded. In this work, we explore how to efficiently leverage class text information to mitigate these distribution drifts encountered by large pre-trained vision-language models (VLMs) during test-time inference. In particular, we propose to generate pseudo-labels for the test-time samples by exploiting generic class text embeddings as fixed centroids of a label assignment problem, which is efficiently solved with Optimal Transport. Furthermore, the proposed adaptation method (CLIP-OT) integrates a multiple template knowledge distillation approach, which replicates multi-view contrastive learning strategies in unsupervised representation learning but without incurring additional computational complexity. Extensive experiments on multiple popular test-time adaptation benchmarks presenting diverse complexity empirically show the superiority of CLIP-OT, achieving performance gains of up to 7% over recent state-of-the-art methods, yet being computationally and memory efficient.
Abstract:Test-Time Adaptation (TTA) addresses distribution shifts during testing by adapting a pretrained model without access to source data. In this work, we propose a novel TTA approach for 3D point cloud classification, combining sampling variation with weight averaging. Our method leverages Farthest Point Sampling (FPS) and K-Nearest Neighbors (KNN) to create multiple point cloud representations, adapting the model for each variation using the TENT algorithm. The final model parameters are obtained by averaging the adapted weights, leading to improved robustness against distribution shifts. Extensive experiments on ModelNet40-C, ShapeNet-C, and ScanObjectNN-C datasets, with different backbones (Point-MAE, PointNet, DGCNN), demonstrate that our approach consistently outperforms existing methods while maintaining minimal resource overhead. The proposed method effectively enhances model generalization and stability in challenging real-world conditions.
Abstract:Integrating image and text data through multi-modal learning has emerged as a new approach in medical imaging research, following its successful deployment in computer vision. While considerable efforts have been dedicated to establishing medical foundation models and their zero-shot transfer to downstream tasks, the popular few-shot setting remains relatively unexplored. Following on from the currently strong emergence of this setting in computer vision, we introduce the first structured benchmark for adapting medical vision-language models (VLMs) in a strict few-shot regime and investigate various adaptation strategies commonly used in the context of natural images. Furthermore, we evaluate a simple generalization of the linear-probe adaptation baseline, which seeks an optimal blending of the visual prototypes and text embeddings via learnable class-wise multipliers. Surprisingly, such a text-informed linear probe yields competitive performances in comparison to convoluted prompt-learning and adapter-based strategies, while running considerably faster and accommodating the black-box setting. Our extensive experiments span three different medical modalities and specialized foundation models, nine downstream tasks, and several state-of-the-art few-shot adaptation methods. We made our benchmark and code publicly available to trigger further developments in this emergent subject: \url{https://github.com/FereshteShakeri/few-shot-MedVLMs}.
Abstract:The development of vision-language models (VLMs) for histo-pathology has shown promising new usages and zero-shot performances. However, current approaches, which decompose large slides into smaller patches, focus solely on inductive classification, i.e., prediction for each patch is made independently of the other patches in the target test data. We extend the capability of these large models by introducing a transductive approach. By using text-based predictions and affinity relationships among patches, our approach leverages the strong zero-shot capabilities of these new VLMs without any additional labels. Our experiments cover four histopathology datasets and five different VLMs. Operating solely in the embedding space (i.e., in a black-box setting), our approach is highly efficient, processing $10^5$ patches in just a few seconds, and shows significant accuracy improvements over inductive zero-shot classification. Code available at https://github.com/FereshteShakeri/Histo-TransCLIP.
Abstract:Vision-Language Models for remote sensing have shown promising uses thanks to their extensive pretraining. However, their conventional usage in zero-shot scene classification methods still involves dividing large images into patches and making independent predictions, i.e., inductive inference, thereby limiting their effectiveness by ignoring valuable contextual information. Our approach tackles this issue by utilizing initial predictions based on text prompting and patch affinity relationships from the image encoder to enhance zero-shot capabilities through transductive inference, all without the need for supervision and at a minor computational cost. Experiments on 10 remote sensing datasets with state-of-the-art Vision-Language Models demonstrate significant accuracy improvements over inductive zero-shot classification. Our source code is publicly available on Github: https://github.com/elkhouryk/RS-TransCLIP
Abstract:This paper addresses the critical issue of miscalibration in CLIP-based model adaptation, particularly in the challenging scenario of out-of-distribution (OOD) samples, which has been overlooked in the existing literature on CLIP adaptation. We empirically demonstrate that popular CLIP adaptation approaches, such as Adapters, Prompt Learning, and Test-Time Adaptation, substantially degrade the calibration capabilities of the zero-shot baseline in the presence of distributional drift. We identify the increase in logit ranges as the underlying cause of miscalibration of CLIP adaptation methods, contrasting with previous work on calibrating fully-supervised models. Motivated by these observations, we present a simple and model-agnostic solution to mitigate miscalibration, by scaling the logit range of each sample to its zero-shot prediction logits. We explore three different alternatives to achieve this, which can be either integrated during adaptation or directly used at inference time. Comprehensive experiments on popular OOD classification benchmarks demonstrate the effectiveness of the proposed approaches in mitigating miscalibration while maintaining discriminative performance, whose improvements are consistent across the three families of these increasingly popular approaches. The code is publicly available at: https://github.com/Bala93/CLIPCalib
Abstract:Standard deep learning architectures such as convolutional neural networks and vision transformers often fail to generalize to previously unseen domains due to the implicit assumption that both source and target data are drawn from independent and identically distributed (i.i.d.) populations. In response, Domain Generalization techniques aim to enhance model robustness by simulating novel data distributions during training, typically through various augmentation or stylization strategies. However, these methods frequently suffer from limited control over the diversity of generated images and lack assurance that these images span distinct distributions. To address these challenges, we propose FDS, a novel strategy that employs diffusion models to synthesize samples from new domains by training on source distribution samples and performing domain mixing. By incorporating images that pose classification challenges to models trained on original samples, alongside the original dataset, we ensure the generation of a training set that spans a broad distribution spectrum. Our comprehensive evaluations demonstrate that this methodology sets new benchmarks in domain generalization performance across a range of challenging datasets, effectively managing diverse types of domain shifts. The implementation is available at: \url{https://github.com/Mehrdad-Noori/FDS.git}.
Abstract:Vision-Language Models (VLMs) such as CLIP have yielded unprecedented performance for zero-shot image classification, yet their generalization capability may still be seriously challenged when confronted to domain shifts. In response, we present Weight Average Test-Time Adaptation (WATT) of CLIP, a pioneering approach facilitating full test-time adaptation (TTA) of this VLM. Our method employs a diverse set of templates for text prompts, augmenting the existing framework of CLIP. Predictions are utilized as pseudo labels for model updates, followed by weight averaging to consolidate the learned information globally. Furthermore, we introduce a text ensemble strategy, enhancing overall test performance by aggregating diverse textual cues. Our findings underscore the efficacy of WATT in enhancing performance across diverse datasets, including CIFAR-10-C, CIFAR-10.1, CIFAR-100-C, VisDA-C, and several other challenging datasets, effectively covering a wide range of domain shifts. Notably, these enhancements are achieved without necessitating additional model transformations or trainable modules. Moreover, compared to other Test-Time Adaptation methods, our approach can operate effectively with just a single image. Highlighting the potential of innovative test-time strategies, this research emphasizes their role in fortifying the adaptability of VLMs. The implementation is available at: \url{https://github.com/Mehrdad-Noori/WATT.git}.
Abstract:Vision-Language Models (VLMs) such as CLIP have yielded unprecedented performance for zero-shot image classification, yet their generalization capability may still be seriously challenged when confronted to domain shifts. In response, we present Weight Average Test-Time Adaptation (WATT) of CLIP, a pioneering approach facilitating full test-time adaptation (TTA) of this VLM. Our method employs a diverse set of templates for text prompts, augmenting the existing framework of CLIP. Predictions are utilized as pseudo labels for model updates, followed by weight averaging to consolidate the learned information globally. Furthermore, we introduce a text ensemble strategy, enhancing overall test performance by aggregating diverse textual cues. Our findings underscore the efficacy of WATT in enhancing performance across diverse datasets, including CIFAR-10-C, CIFAR-10.1, CIFAR-100-C, VisDA-C, and several other challenging datasets, effectively covering a wide range of domain shifts. Notably, these enhancements are achieved without necessitating additional model transformations or trainable modules. Moreover, compared to other Test-Time Adaptation methods, our approach can operate effectively with just a single image. Highlighting the potential of innovative test-time strategies, this research emphasizes their role in fortifying the adaptability of VLMs. The implementation is available at: \url{https://github.com/Mehrdad-Noori/WATT.git}.