École de Technologie Supérieure, Montreal, Canada
Abstract:We argue that existing training-free segmentation methods rely on an implicit and limiting assumption, that segmentation is a spectral graph partitioning problem over diffusion-derived affinities. Such approaches, based on global graph partitioning and eigenvector-based formulations of affinity matrices, suffer from several fundamental drawbacks, they require pre-selecting the number of clusters, induce boundary oversmoothing due to spectral relaxation, and remain highly sensitive to noisy or multi-modal affinity distributions. Moreover, many prior works neglect the importance of local neighborhood structure, which plays a crucial role in stabilizing affinity propagation and preserving fine-grained contours. To address these limitations, we reformulate training-free segmentation as a stochastic flow equilibrium problem over diffusion-induced affinity graphs, where segmentation emerges from a stochastic propagation process that integrates global diffusion attention with local neighborhoods extracted from stable diffusion, yielding a sparse yet expressive affinity structure. Building on this formulation, we introduce a Markov propagation scheme that performs random-walk-based label diffusion with an adaptive pruning strategy that suppresses unreliable transitions while reinforcing confident affinity paths. Experiments across seven widely used semantic segmentation benchmarks demonstrate that our method achieves state-of-the-art zero-shot performance, producing sharper boundaries, more coherent regions, and significantly more stable masks compared to prior spectral-clustering-based approaches.
Abstract:State space models (SSMs) have recently emerged as an alternative to transformers due to their unique ability of modeling global relationships in text with linear complexity. However, their success in vision tasks has been limited due to their causal formulation, which is suitable for sequential text but detrimental in the spatial domain where causality breaks the inherent spatial relationships among pixels or patches. As a result, standard SSMs fail to capture local spatial coherence, often linking non-adjacent patches while ignoring neighboring ones that are visually correlated. To address these limitations, we introduce OCTOPUS , a novel architecture that preserves both global context and local spatial structure within images, while maintaining the linear complexity of SSMs. OCTOPUS performs discrete reoccurrence along eight principal orientations, going forward or backward in the horizontal, vertical, and diagonal directions, allowing effective information exchange across all spatially connected regions while maintaining independence among unrelated patches. This design enables multi-directional recurrence, capturing both global context and local spatial structure with SSM-level efficiency. In our classification and segmentation benchmarks, OCTOPUS demonstrates notable improvements in boundary preservation and region consistency, as evident from the segmentation results, while maintaining relatively better classification accuracy compared to existing V-SSM based models. These results suggest that OCTOPUS appears as a foundation method for multi-directional recurrence as a scalable and effective mechanism for building spatially aware and computationally efficient vision architectures.
Abstract:Deep neural networks have achieved remarkable success across a variety of tasks, yet they often suffer from unreliable probability estimates. As a result, they can be overconfident in their predictions. Conformal Prediction (CP) offers a principled framework for uncertainty quantification, yielding prediction sets with rigorous coverage guarantees. Existing conformal training methods optimize for overall set size, but shaping the prediction sets in a class-conditional manner is not straightforward and typically requires prior knowledge of the data distribution. In this work, we introduce Class Adaptive Conformal Training (CaCT), which formulates conformal training as an augmented Lagrangian optimization problem that adaptively learns to shape prediction sets class-conditionally without making any distributional assumptions. Experiments on multiple benchmark datasets, including standard and long-tailed image recognition as well as text classification, demonstrate that CaCT consistently outperforms prior conformal training methods, producing significantly smaller and more informative prediction sets while maintaining the desired coverage guarantees.
Abstract:With the increasing adoption of vision-language models (VLMs) in critical decision-making systems such as healthcare or autonomous driving, the calibration of their uncertainty estimates becomes paramount. Yet, this dimension has been largely underexplored in the VLM test-time prompt-tuning (TPT) literature, which has predominantly focused on improving their discriminative performance. Recent state-of-the-art advocates for enforcing full orthogonality over pairs of text prompt embeddings to enhance separability, and therefore calibration. Nevertheless, as we theoretically show in this work, the inherent gradients from fully orthogonal constraints will strongly push semantically related classes away, ultimately making the model overconfident. Based on our findings, we propose Semantic Orthogonal Calibration (SoC), a Huber-based regularizer that enforces smooth prototype separation while preserving semantic proximity, thereby improving calibration compared to prior orthogonality-based approaches. Across a comprehensive empirical validation, we demonstrate that SoC consistently improves calibration performance, while also maintaining competitive discriminative capabilities.
Abstract:Despite recent advances in Open-Vocabulary Semantic Segmentation (OVSS), existing training-free methods face several limitations: use of computationally expensive affinity refinement strategies, ineffective fusion of transformer attention maps due to equal weighting or reliance on fixed-size Gaussian kernels to reinforce local spatial smoothness, enforcing isotropic neighborhoods. We propose a strong baseline for training-free OVSS termed as NERVE (Neighbourhood \& Entropy-guided Random-walk for open-Vocabulary sEgmentation), which uniquely integrates global and fine-grained local information, exploiting the neighbourhood structure from the self-attention layer of a stable diffusion model. We also introduce a stochastic random walk for refining the affinity rather than relying on fixed-size Gaussian kernels for local context. This spatial diffusion process encourages propagation across connected and semantically related areas, enabling it to effectively delineate objects with arbitrary shapes. Whereas most existing approaches treat self-attention maps from different transformer heads or layers equally, our method uses entropy-based uncertainty to select the most relevant maps. Notably, our method does not require any conventional post-processing techniques like Conditional Random Fields (CRF) or Pixel-Adaptive Mask Refinement (PAMR). Experiments are performed on 7 popular semantic segmentation benchmarks, yielding an overall state-of-the-art zero-shot segmentation performance, providing an effective approach to open-vocabulary semantic segmentation.




Abstract:Progress in a research field can be hard to assess, in particular when many concurrent methods are proposed in a short period of time. This is the case in digital pathology, where many foundation models have been released recently to serve as feature extractors for tile-level images, being used in a variety of downstream tasks, both for tile- and slide-level problems. Benchmarking available methods then becomes paramount to get a clearer view of the research landscape. In particular, in critical domains such as healthcare, a benchmark should not only focus on evaluating downstream performance, but also provide insights about the main differences between methods, and importantly, further consider uncertainty and robustness to ensure a reliable usage of proposed models. For these reasons, we introduce THUNDER, a tile-level benchmark for digital pathology foundation models, allowing for efficient comparison of many models on diverse datasets with a series of downstream tasks, studying their feature spaces and assessing the robustness and uncertainty of predictions informed by their embeddings. THUNDER is a fast, easy-to-use, dynamic benchmark that can already support a large variety of state-of-the-art foundation, as well as local user-defined models for direct tile-based comparison. In this paper, we provide a comprehensive comparison of 23 foundation models on 16 different datasets covering diverse tasks, feature analysis, and robustness. The code for THUNDER is publicly available at https://github.com/MICS-Lab/thunder.
Abstract:Reliable Uncertainty Quantification (UQ) and failure prediction remain open challenges for Vision-Language Models (VLMs). We introduce ViLU, a new Vision-Language Uncertainty quantification framework that contextualizes uncertainty estimates by leveraging all task-relevant textual representations. ViLU constructs an uncertainty-aware multi-modal representation by integrating the visual embedding, the predicted textual embedding, and an image-conditioned textual representation via cross-attention. Unlike traditional UQ methods based on loss prediction, ViLU trains an uncertainty predictor as a binary classifier to distinguish correct from incorrect predictions using a weighted binary cross-entropy loss, making it loss-agnostic. In particular, our proposed approach is well-suited for post-hoc settings, where only vision and text embeddings are available without direct access to the model itself. Extensive experiments on diverse datasets show the significant gains of our method compared to state-of-the-art failure prediction methods. We apply our method to standard classification datasets, such as ImageNet-1k, as well as large-scale image-caption datasets like CC12M and LAION-400M. Ablation studies highlight the critical role of our architecture and training in achieving effective uncertainty quantification. Our code is publicly available and can be found here: https://github.com/ykrmm/ViLU.
Abstract:Accurate segmentation of white matter hyperintensities (WMH) is crucial for clinical decision-making, particularly in the context of multiple sclerosis. However, domain shifts, such as variations in MRI machine types or acquisition parameters, pose significant challenges to model calibration and uncertainty estimation. This study investigates the impact of domain shift on WMH segmentation by proposing maximum-entropy regularization techniques to enhance model calibration and uncertainty estimation, with the purpose of identifying errors post-deployment using predictive uncertainty as a proxy measure that does not require ground-truth labels. To do this, we conducted experiments using a U-Net architecture to evaluate these regularization schemes on two publicly available datasets, assessing performance with the Dice coefficient, expected calibration error, and entropy-based uncertainty estimates. Our results show that entropy-based uncertainty estimates can anticipate segmentation errors, and that maximum-entropy regularization further strengthens the correlation between uncertainty and segmentation performance while also improving model calibration under domain shift.




Abstract:Vision-language models (VLMs) pre-trained at large scale have shown unprecedented transferability capabilities and are being progressively integrated into medical image analysis. Although its discriminative potential has been widely explored, its reliability aspect remains overlooked. This work investigates their behavior under the increasingly popular split conformal prediction (SCP) framework, which theoretically guarantees a given error level on output sets by leveraging a labeled calibration set. However, the zero-shot performance of VLMs is inherently limited, and common practice involves few-shot transfer learning pipelines, which cannot absorb the rigid exchangeability assumptions of SCP. To alleviate this issue, we propose full conformal adaptation, a novel setting for jointly adapting and conformalizing pre-trained foundation models, which operates transductively over each test data point using a few-shot adaptation set. Moreover, we complement this framework with SS-Text, a novel training-free linear probe solver for VLMs that alleviates the computational cost of such a transductive approach. We provide comprehensive experiments using 3 different modality-specialized medical VLMs and 9 adaptation tasks. Our framework requires exactly the same data as SCP, and provides consistent relative improvements of up to 27% on set efficiency while maintaining the same coverage guarantees.
Abstract:Vision-language models pre-trained at large scale have shown unprecedented adaptability and generalization to downstream tasks. Although its discriminative potential has been widely explored, its reliability and uncertainty are still overlooked. In this work, we investigate the capabilities of CLIP models under the split conformal prediction paradigm, which provides theoretical guarantees to black-box models based on a small, labeled calibration set. In contrast to the main body of literature on conformal predictors in vision classifiers, foundation models exhibit a particular characteristic: they are pre-trained on a one-time basis on an inaccessible source domain, different from the transferred task. This domain drift negatively affects the efficiency of the conformal sets and poses additional challenges. To alleviate this issue, we propose Conf-OT, a transfer learning setting that operates transductive over the combined calibration and query sets. Solving an optimal transport problem, the proposed method bridges the domain gap between pre-training and adaptation without requiring additional data splits but still maintaining coverage guarantees. We comprehensively explore this conformal prediction strategy on a broad span of 15 datasets and three non-conformity scores. Conf-OT provides consistent relative improvements of up to 20% on set efficiency while being 15 times faster than popular transductive approaches.