Abstract:The emergence of large pre-trained vision-language models (VLMs) represents a paradigm shift in machine learning, with unprecedented results in a broad span of visual recognition tasks. CLIP, one of the most popular VLMs, has exhibited remarkable zero-shot and transfer learning capabilities in classification. To transfer CLIP to downstream tasks, adapters constitute a parameter-efficient approach that avoids backpropagation through the large model (unlike related prompt learning methods). However, CLIP adapters have been developed to target discriminative performance, and the quality of their uncertainty estimates has been overlooked. In this work we show that the discriminative performance of state-of-the-art CLIP adapters does not always correlate with their uncertainty estimation capabilities, which are essential for a safe deployment in real-world scenarios. We also demonstrate that one of such adapters is obtained through MAP inference from a more general probabilistic framework. Based on this observation we introduce BayesAdapter, which leverages Bayesian inference to estimate a full probability distribution instead of a single point, better capturing the variability inherent in the parameter space. In a comprehensive empirical evaluation we show that our approach obtains high quality uncertainty estimates in the predictions, standing out in calibration and selective classification. Our code is publicly available at: https://github.com/pablomorales92/BayesAdapter.
Abstract:The dissemination of Large Language Models (LLMs), trained at scale, and endowed with powerful text-generating abilities has vastly increased the threats posed by generative AI technologies by reducing the cost of producing harmful, toxic, faked or forged content. In response, various proposals have been made to automatically discriminate artificially generated from human-written texts, typically framing the problem as a classification problem. Most approaches evaluate an input document by a well-chosen detector LLM, assuming that low-perplexity scores reliably signal machine-made content. As using one single detector can induce brittleness of performance, we instead consider several and derive a new, theoretically grounded approach to combine their respective strengths. Our experiments, using a variety of generator LLMs, suggest that our method effectively increases the robustness of detection.
Abstract:This paper introduces a universal approach to seamlessly combine out-of-distribution (OOD) detection scores. These scores encompass a wide range of techniques that leverage the self-confidence of deep learning models and the anomalous behavior of features in the latent space. Not surprisingly, combining such a varied population using simple statistics proves inadequate. To overcome this challenge, we propose a quantile normalization to map these scores into p-values, effectively framing the problem into a multi-variate hypothesis test. Then, we combine these tests using established meta-analysis tools, resulting in a more effective detector with consolidated decision boundaries. Furthermore, we create a probabilistic interpretable criterion by mapping the final statistics into a distribution with known parameters. Through empirical investigation, we explore different types of shifts, each exerting varying degrees of impact on data. Our results demonstrate that our approach significantly improves overall robustness and performance across diverse OOD detection scenarios. Notably, our framework is easily extensible for future developments in detection scores and stands as the first to combine decision boundaries in this context. The code and artifacts associated with this work are publicly available\footnote{\url{https://github.com/edadaltocg/detectors}}.
Abstract:Machine learning models can solve complex tasks but often require significant computational resources during inference. This has led to the development of various post-training computation reduction methods that tackle this issue in different ways, such as quantization which reduces the precision of weights and arithmetic operations, and dynamic networks which adapt computation to the sample at hand. In this work, we propose a more general dynamic network that can combine both quantization and early exit dynamic network: QuEE. Our algorithm can be seen as a form of soft early exiting or input-dependent compression. Rather than a binary decision between exiting or continuing, we introduce the possibility of continuing with reduced computation. This complicates the traditionally considered early exiting problem, which we solve through a principled formulation. The crucial factor of our approach is accurate prediction of the potential accuracy improvement achievable through further computation. We demonstrate the effectiveness of our method through empirical evaluation, as well as exploring the conditions for its success on 4 classification datasets.
Abstract:Embedders play a central role in machine learning, projecting any object into numerical representations that can, in turn, be leveraged to perform various downstream tasks. The evaluation of embedding models typically depends on domain-specific empirical approaches utilizing downstream tasks, primarily because of the lack of a standardized framework for comparison. However, acquiring adequately large and representative datasets for conducting these assessments is not always viable and can prove to be prohibitively expensive and time-consuming. In this paper, we present a unified approach to evaluate embedders. First, we establish theoretical foundations for comparing embedding models, drawing upon the concepts of sufficiency and informativeness. We then leverage these concepts to devise a tractable comparison criterion (information sufficiency), leading to a task-agnostic and self-supervised ranking procedure. We demonstrate experimentally that our approach aligns closely with the capability of embedding models to facilitate various downstream tasks in both natural language processing and molecular biology. This effectively offers practitioners a valuable tool for prioritizing model trials.
Abstract:Scientific peer review is essential for the quality of academic publications. However, the increasing number of paper submissions to conferences has strained the reviewing process. This surge poses a burden on area chairs who have to carefully read an ever-growing volume of reviews and discern each reviewer's main arguments as part of their decision process. In this paper, we introduce \sys, a summarization method designed to offer a concise yet comprehensive overview of scholarly reviews. Unlike traditional consensus-based methods, \sys extracts both common and unique opinions from the reviews. We introduce novel uniqueness scores based on the Rational Speech Act framework to identify relevant sentences in the reviews. Our method aims to provide a pragmatic glimpse into all reviews, offering a balanced perspective on their opinions. Our experimental results with both automatic metrics and human evaluation show that \sys generates more discriminative summaries than baseline methods in terms of human evaluation while achieving comparable performance with these methods in terms of automatic metrics.
Abstract:This paper tackles the challenge of detecting unreliable behavior in regression algorithms, which may arise from intrinsic variability (e.g., aleatoric uncertainty) or modeling errors (e.g., model uncertainty). First, we formally introduce the notion of unreliability in regression, i.e., when the output of the regressor exceeds a specified discrepancy (or error). Then, using powerful tools for probabilistic modeling, we estimate the discrepancy density, and we measure its statistical diversity using our proposed metric for statistical dissimilarity. In turn, this allows us to derive a data-driven score that expresses the uncertainty of the regression outcome. We show empirical improvements in error detection for multiple regression tasks, consistently outperforming popular baseline approaches, and contributing to the broader field of uncertainty quantification and safe machine learning systems. Our code is available at https://zenodo.org/records/11281964.
Abstract:Few-shot learning has recently attracted significant interest in drug discovery, with a recent, fast-growing literature mostly involving convoluted meta-learning strategies. We revisit the more straightforward fine-tuning approach for molecular data, and propose a regularized quadratic-probe loss based on the the Mahalanobis distance. We design a dedicated block-coordinate descent optimizer, which avoid the degenerate solutions of our loss. Interestingly, our simple fine-tuning approach achieves highly competitive performances in comparison to state-of-the-art methods, while being applicable to black-box settings and removing the need for specific episodic pre-training strategies. Furthermore, we introduce a new benchmark to assess the robustness of the competing methods to domain shifts. In this setting, our fine-tuning baseline obtains consistently better results than meta-learning methods.
Abstract:Assessing the quality of summarizers poses significant challenges. In response, we propose a novel task-oriented evaluation approach that assesses summarizers based on their capacity to produce summaries that are useful for downstream tasks, while preserving task outcomes. We theoretically establish a direct relationship between the resulting error probability of these tasks and the mutual information between source texts and generated summaries. We introduce $\texttt{COSMIC}$ as a practical implementation of this metric, demonstrating its strong correlation with human judgment-based metrics and its effectiveness in predicting downstream task performance. Comparative analyses against established metrics like $\texttt{BERTScore}$ and $\texttt{ROUGE}$ highlight the competitive performance of $\texttt{COSMIC}$.
Abstract:This paper explores a scenario in which a malicious actor employs a multi-armed attack strategy to manipulate data samples, offering them various avenues to introduce noise into the dataset. Our central objective is to protect the data by detecting any alterations to the input. We approach this defensive strategy with utmost caution, operating in an environment where the defender possesses significantly less information compared to the attacker. Specifically, the defender is unable to utilize any data samples for training a defense model or verifying the integrity of the channel. Instead, the defender relies exclusively on a set of pre-existing detectors readily available "off the shelf". To tackle this challenge, we derive an innovative information-theoretic defense approach that optimally aggregates the decisions made by these detectors, eliminating the need for any training data. We further explore a practical use-case scenario for empirical evaluation, where the attacker possesses a pre-trained classifier and launches well-known adversarial attacks against it. Our experiments highlight the effectiveness of our proposed solution, even in scenarios that deviate from the optimal setup.