Abstract:In-context learning (ICL) has become an effective solution for few-shot learning in natural language processing. Past work has found that, during this process, representations of the last prompt token are utilized to store task reasoning procedures, thereby explaining the working mechanism of in-context learning. In this paper, we seek to locate and analyze other task-encoding tokens whose representations store task reasoning procedures. Supported by experiments that ablate the representations of different token types, we find that template and stopword tokens are the most prone to be task-encoding tokens. In addition, we demonstrate experimentally that lexical cues, repetition, and text formats are the main distinguishing characteristics of these tokens. Our work provides additional insights into how large language models (LLMs) leverage task reasoning procedures in ICL and suggests that future work may involve using task-encoding tokens to improve the computational efficiency of LLMs at inference time and their ability to handle long sequences.