LIS, TALEP
Abstract:We present a spoken conversational question answering proof of concept that is able to answer questions about general knowledge from Wikidata. The dialogue component does not only orchestrate various components but also solve coreferences and ellipsis.
Abstract:This paper describes a Semantic Frame parsing System based on sequence labeling methods, precisely BiLSTM models with highway connections, for performing information extraction on a corpus of French encyclopedic history texts annotated according to the Berkeley FrameNet formalism. The approach proposed in this study relies on an integrated sequence labeling model which jointly optimizes frame identification and semantic role segmentation and identification. The purpose of this study is to analyze the task complexity, to highlight the factors that make Semantic Frame parsing a difficult task and to provide detailed evaluations of the performance on different types of frames and sentences.
Abstract:This article presents an automatic frame analysis system evaluated on a corpus of French encyclopedic history texts annotated according to the FrameNet formalism. The chosen approach relies on an integrated sequence labeling model which jointly optimizes frame identification and semantic role segmentation and identification. The purpose of this study is to analyze the task complexity from several dimensions. Hence we provide detailed evaluations from a feature selection point of view and from the data point of view.
Abstract:This paper presents a publicly available corpus of French encyclopedic history texts annotated according to the Berkeley FrameNet formalism. The main difference in our approach compared to previous works on semantic parsing with FrameNet is that we are not interested here in full text parsing but rather on partial parsing. The goal is to select from the FrameNet resources the minimal set of frames that are going to be useful for the applicative framework targeted, in our case Information Extraction from encyclopedic documents. Such an approach leverages the manual annotation of larger corpora than those obtained through full text parsing and therefore opens the door to alternative methods for Frame parsing than those used so far on the FrameNet 1.5 benchmark corpus. The approaches compared in this study rely on an integrated sequence labeling model which jointly optimizes frame identification and semantic role segmentation and identification. The models compared are CRFs and multitasks bi-LSTMs.