LIS, TALEP
Abstract:We introduce an evaluation methodology for reading comprehension tasks based on the intuition that certain examples, by the virtue of their linguistic complexity, consistently yield lower scores regardless of model size or architecture. We capitalize on semantic frame annotation for characterizing this complexity, and study seven complexity factors that may account for model's difficulty. We first deploy this methodology on a carefully annotated French reading comprehension benchmark showing that two of those complexity factors are indeed good predictors of models' failure, while others are less so. We further deploy our methodology on a well studied English benchmark by using Chat-GPT as a proxy for semantic annotation. Our study reveals that fine-grained linguisticallymotivated automatic evaluation of a reading comprehension task is not only possible, but helps understand models' abilities to handle specific linguistic characteristics of input examples. It also shows that current state-of-the-art models fail with some for those characteristics which suggests that adequately handling them requires more than merely increasing model size.
Abstract:This study investigates the behavior of model-integrated routers in Mixture of Experts (MoE) models, focusing on how tokens are routed based on their linguistic features, specifically Part-of-Speech (POS) tags. The goal is to explore across different MoE architectures whether experts specialize in processing tokens with similar linguistic traits. By analyzing token trajectories across experts and layers, we aim to uncover how MoE models handle linguistic information. Findings from six popular MoE models reveal expert specialization for specific POS categories, with routing paths showing high predictive accuracy for POS, highlighting the value of routing paths in characterizing tokens.