Abstract:Large Language Models (LLMs) often encounter conflicts between their learned, internal (parametric knowledge, PK) and external knowledge provided during inference (contextual knowledge, CK). Understanding how LLMs models prioritize one knowledge source over the other remains a challenge. In this paper, we propose a novel probing framework to explore the mechanisms governing the selection between PK and CK in LLMs. Using controlled prompts designed to contradict the model's PK, we demonstrate that specific model activations are indicative of the knowledge source employed. We evaluate this framework on various LLMs of different sizes and demonstrate that mid-layer activations, particularly those related to relations in the input, are crucial in predicting knowledge source selection, paving the way for more reliable models capable of handling knowledge conflicts effectively.
Abstract:With the recent addition of Retrieval-Augmented Generation (RAG), the scope and importance of Information Retrieval (IR) has expanded. As a result, the importance of a deeper understanding of IR models also increases. However, interpretability in IR remains under-explored, especially when it comes to the models' inner mechanisms. In this paper, we explore the possibility of adapting Integrated Gradient-based methods in an IR context to identify the role of individual neurons within the model. In particular, we provide new insights into the role of what we call "relevance" neurons, as well as how they deal with unseen data. Finally, we carry out an in-depth pruning study to validate our findings.
Abstract:Large Language Models have demonstrated remarkable performance across various tasks, exhibiting the capacity to swiftly acquire new skills, such as through In-Context Learning (ICL) with minimal demonstration examples. In this work, we present a comprehensive framework for investigating Multimodal ICL (M-ICL) in the context of Large Multimodal Models. We consider the best open-source multimodal models (e.g., IDEFICS, OpenFlamingo) and a wide range of multimodal tasks. Our study unveils several noteworthy findings: (1) M-ICL primarily relies on text-driven mechanisms, showing little to no influence from the image modality. (2) When used with advanced-ICL strategy (like RICES), M-ICL is not better than a simple strategy based on majority voting over context examples. Moreover, we identify several biases and limitations of M-ICL that warrant consideration prior to deployment. Code available at https://gitlab.com/folbaeni/multimodal-icl
Abstract:Table Question-Answering involves both understanding the natural language query and grounding it in the context of the input table to extract the relevant information. In this context, many methods have highlighted the benefits of intermediate pre-training from SQL queries. However, while most approaches aim at generating final answers from inputs directly, we claim that there is better to do with SQL queries during training. By learning to imitate a restricted portion of SQL-like algebraic operations, we show that their execution flow provides intermediate supervision steps that allow increased generalization and structural reasoning compared with classical approaches of the field. Our study bridges the gap between semantic parsing and direct answering methods and provides useful insights regarding what types of operations should be predicted by a generative architecture or be preferably executed by an external algorithm.
Abstract:In Information Retrieval, and more generally in Natural Language Processing, adapting models to specific domains is conducted through fine-tuning. Despite the successes achieved by this method and its versatility, the need for human-curated and labeled data makes it impractical to transfer to new tasks, domains, and/or languages when training data doesn't exist. Using the model without training (zero-shot) is another option that however suffers an effectiveness cost, especially in the case of first-stage retrievers. Numerous research directions have emerged to tackle these issues, most of them in the context of adapting to a task or a language. However, the literature is scarcer for domain (or topic) adaptation. In this paper, we address this issue of cross-topic discrepancy for a sparse first-stage retriever by transposing a method initially designed for language adaptation. By leveraging pre-training on the target data to learn domain-specific knowledge, this technique alleviates the need for annotated data and expands the scope of domain adaptation. Despite their relatively good generalization ability, we show that even sparse retrievers can benefit from our simple domain adaptation method.
Abstract:Evaluation in Information Retrieval relies on post-hoc empirical procedures, which are time-consuming and expensive operations. To alleviate this, Query Performance Prediction (QPP) models have been developed to estimate the performance of a system without the need for human-made relevance judgements. Such models, usually relying on lexical features from queries and corpora, have been applied to traditional sparse IR methods - with various degrees of success. With the advent of neural IR and large Pre-trained Language Models, the retrieval paradigm has significantly shifted towards more semantic signals. In this work, we study and analyze to what extent current QPP models can predict the performance of such systems. Our experiments consider seven traditional bag-of-words and seven BERT-based IR approaches, as well as nineteen state-of-the-art QPPs evaluated on two collections, Deep Learning '19 and Robust '04. Our findings show that QPPs perform statistically significantly worse on neural IR systems. In settings where semantic signals are prominent (e.g., passage retrieval), their performance on neural models drops by as much as 10% compared to bag-of-words approaches. On top of that, in lexical-oriented scenarios, QPPs fail to predict performance for neural IR systems on those queries where they differ from traditional approaches the most.
Abstract:Text Summarization is a popular task and an active area of research for the Natural Language Processing community. By definition, it requires to account for long input texts, a characteristic which poses computational challenges for neural models. Moreover, real-world documents come in a variety of complex, visually-rich, layouts. This information is of great relevance, whether to highlight salient content or to encode long-range interactions between textual passages. Yet, all publicly available summarization datasets only provide plain text content. To facilitate research on how to exploit visual/layout information to better capture long-range dependencies in summarization models, we present LoRaLay, a collection of datasets for long-range summarization with accompanying visual/layout information. We extend existing and popular English datasets (arXiv and PubMed) with layout information and propose four novel datasets -- consistently built from scholar resources -- covering French, Spanish, Portuguese, and Korean languages. Further, we propose new baselines merging layout-aware and long-range models -- two orthogonal approaches -- and obtain state-of-the-art results, showing the importance of combining both lines of research.
Abstract:Conversational search is a difficult task as it aims at retrieving documents based not only on the current user query but also on the full conversation history. Most of the previous methods have focused on a multi-stage ranking approach relying on query reformulation, a critical intermediate step that might lead to a sub-optimal retrieval. Other approaches have tried to use a fully neural IR first-stage, but are either zero-shot or rely on full learning-to-rank based on a dataset with pseudo-labels. In this work, leveraging the CANARD dataset, we propose an innovative lightweight learning technique to train a first-stage ranker based on SPLADE. By relying on SPLADE sparse representations, we show that, when combined with a second-stage ranker based on T5Mono, the results are competitive on the TREC CAsT 2020 and 2021 tracks.
Abstract:Neural retrievers based on dense representations combined with Approximate Nearest Neighbors search have recently received a lot of attention, owing their success to distillation and/or better sampling of examples for training -- while still relying on the same backbone architecture. In the meantime, sparse representation learning fueled by traditional inverted indexing techniques has seen a growing interest, inheriting from desirable IR priors such as explicit lexical matching. While some architectural variants have been proposed, a lesser effort has been put in the training of such models. In this work, we build on SPLADE -- a sparse expansion-based retriever -- and show to which extent it is able to benefit from the same training improvements as dense models, by studying the effect of distillation, hard-negative mining as well as the Pre-trained Language Model initialization. We furthermore study the link between effectiveness and efficiency, on in-domain and zero-shot settings, leading to state-of-the-art results in both scenarios for sufficiently expressive models.
Abstract:Language models generate texts by successively predicting probability distributions for next tokens given past ones. A growing field of interest tries to leverage external information in the decoding process so that the generated texts have desired properties, such as being more natural, non toxic, faithful, or having a specific writing style. A solution is to use a classifier at each generation step, resulting in a cooperative environment where the classifier guides the decoding of the language model distribution towards relevant texts for the task at hand. In this paper, we examine three families of (transformer-based) discriminators for this specific task of cooperative decoding: bidirectional, left-to-right and generative ones. We evaluate the pros and cons of these different types of discriminators for cooperative generation, exploring respective accuracy on classification tasks along with their impact on the resulting sample quality and computational performances. We also provide the code of a batched implementation of the powerful cooperative decoding strategy used for our experiments, the Monte Carlo Tree Search, working with each discriminator for Natural Language Generation.