Abstract:In modern urban centers, effective transportation management poses a significant challenge, with traffic jams and inconsistent travel durations greatly affecting commuters and logistics operations. This study introduces a novel method for enhancing urban mobility by combining machine learning algorithms with live traffic information. We developed predictive models for journey time and congestion analysis using data from New York City's yellow taxi trips. The research employed a spatiotemporal analysis framework to identify traffic trends and implemented real-time route optimization using the GraphHopper API. This system determines the most efficient paths based on current conditions, adapting to changes in traffic flow. The methodology utilizes Spark MLlib for predictive modeling and Spark Streaming for processing data in real-time. By integrating historical data analysis with current traffic inputs, our system shows notable enhancements in both travel time forecasts and route optimization, demonstrating its potential for widespread application in major urban areas. This research contributes to ongoing efforts aimed at reducing urban congestion and improving transportation efficiency through advanced data-driven methods.
Abstract:State-of-the-art semi-supervised learning (SSL) approaches rely on highly confident predictions to serve as pseudo-labels that guide the training on unlabeled samples. An inherent drawback of this strategy stems from the quality of the uncertainty estimates, as pseudo-labels are filtered only based on their degree of uncertainty, regardless of the correctness of their predictions. Thus, assessing and enhancing the uncertainty of network predictions is of paramount importance in the pseudo-labeling process. In this work, we empirically demonstrate that SSL methods based on pseudo-labels are significantly miscalibrated, and formally demonstrate the minimization of the min-entropy, a lower bound of the Shannon entropy, as a potential cause for miscalibration. To alleviate this issue, we integrate a simple penalty term, which enforces the logit distances of the predictions on unlabeled samples to remain low, preventing the network predictions to become overconfident. Comprehensive experiments on a variety of SSL image classification benchmarks demonstrate that the proposed solution systematically improves the calibration performance of relevant SSL models, while also enhancing their discriminative power, being an appealing addition to tackle SSL tasks.