Abstract:Standard deep learning architectures such as convolutional neural networks and vision transformers often fail to generalize to previously unseen domains due to the implicit assumption that both source and target data are drawn from independent and identically distributed (i.i.d.) populations. In response, Domain Generalization techniques aim to enhance model robustness by simulating novel data distributions during training, typically through various augmentation or stylization strategies. However, these methods frequently suffer from limited control over the diversity of generated images and lack assurance that these images span distinct distributions. To address these challenges, we propose FDS, a novel strategy that employs diffusion models to synthesize samples from new domains by training on source distribution samples and performing domain mixing. By incorporating images that pose classification challenges to models trained on original samples, alongside the original dataset, we ensure the generation of a training set that spans a broad distribution spectrum. Our comprehensive evaluations demonstrate that this methodology sets new benchmarks in domain generalization performance across a range of challenging datasets, effectively managing diverse types of domain shifts. The implementation is available at: \url{https://github.com/Mehrdad-Noori/FDS.git}.
Abstract:Vision-Language Models (VLMs) such as CLIP have yielded unprecedented performance for zero-shot image classification, yet their generalization capability may still be seriously challenged when confronted to domain shifts. In response, we present Weight Average Test-Time Adaptation (WATT) of CLIP, a pioneering approach facilitating full test-time adaptation (TTA) of this VLM. Our method employs a diverse set of templates for text prompts, augmenting the existing framework of CLIP. Predictions are utilized as pseudo labels for model updates, followed by weight averaging to consolidate the learned information globally. Furthermore, we introduce a text ensemble strategy, enhancing overall test performance by aggregating diverse textual cues. Our findings underscore the efficacy of WATT in enhancing performance across diverse datasets, including CIFAR-10-C, CIFAR-10.1, CIFAR-100-C, VisDA-C, and several other challenging datasets, effectively covering a wide range of domain shifts. Notably, these enhancements are achieved without necessitating additional model transformations or trainable modules. Moreover, compared to other Test-Time Adaptation methods, our approach can operate effectively with just a single image. Highlighting the potential of innovative test-time strategies, this research emphasizes their role in fortifying the adaptability of VLMs. The implementation is available at: \url{https://github.com/Mehrdad-Noori/WATT.git}.
Abstract:Vision-Language Models (VLMs) such as CLIP have yielded unprecedented performance for zero-shot image classification, yet their generalization capability may still be seriously challenged when confronted to domain shifts. In response, we present Weight Average Test-Time Adaptation (WATT) of CLIP, a pioneering approach facilitating full test-time adaptation (TTA) of this VLM. Our method employs a diverse set of templates for text prompts, augmenting the existing framework of CLIP. Predictions are utilized as pseudo labels for model updates, followed by weight averaging to consolidate the learned information globally. Furthermore, we introduce a text ensemble strategy, enhancing overall test performance by aggregating diverse textual cues. Our findings underscore the efficacy of WATT in enhancing performance across diverse datasets, including CIFAR-10-C, CIFAR-10.1, CIFAR-100-C, VisDA-C, and several other challenging datasets, effectively covering a wide range of domain shifts. Notably, these enhancements are achieved without necessitating additional model transformations or trainable modules. Moreover, compared to other Test-Time Adaptation methods, our approach can operate effectively with just a single image. Highlighting the potential of innovative test-time strategies, this research emphasizes their role in fortifying the adaptability of VLMs. The implementation is available at: \url{https://github.com/Mehrdad-Noori/WATT.git}.
Abstract:We introduce a pioneering approach to self-supervised learning for point clouds, employing a geometrically informed mask selection strategy called GeoMask3D (GM3D) to boost the efficiency of Masked Auto Encoders (MAE). Unlike the conventional method of random masking, our technique utilizes a teacher-student model to focus on intricate areas within the data, guiding the model's focus toward regions with higher geometric complexity. This strategy is grounded in the hypothesis that concentrating on harder patches yields a more robust feature representation, as evidenced by the improved performance on downstream tasks. Our method also presents a complete-to-partial feature-level knowledge distillation technique designed to guide the prediction of geometric complexity utilizing a comprehensive context from feature-level information. Extensive experiments confirm our method's superiority over State-Of-The-Art (SOTA) baselines, demonstrating marked improvements in classification, and few-shot tasks.
Abstract:Pre-trained vision-language models (VLMs), exemplified by CLIP, demonstrate remarkable adaptability across zero-shot classification tasks without additional training. However, their performance diminishes in the presence of domain shifts. In this study, we introduce CLIP Adaptation duRing Test-Time (CLIPArTT), a fully test-time adaptation (TTA) approach for CLIP, which involves automatic text prompts construction during inference for their use as text supervision. Our method employs a unique, minimally invasive text prompt tuning process, wherein multiple predicted classes are aggregated into a single new text prompt, used as pseudo label to re-classify inputs in a transductive manner. Additionally, we pioneer the standardization of TTA benchmarks (e.g., TENT) in the realm of VLMs. Our findings demonstrate that, without requiring additional transformations nor new trainable modules, CLIPArTT enhances performance dynamically across non-corrupted datasets such as CIFAR-10, corrupted datasets like CIFAR-10-C and CIFAR-10.1, alongside synthetic datasets such as VisDA-C. This research underscores the potential for improving VLMs' adaptability through novel test-time strategies, offering insights for robust performance across varied datasets and environments. The code can be found at: https://github.com/dosowiechi/CLIPArTT.git
Abstract:Despite their exceptional performance in vision tasks, deep learning models often struggle when faced with domain shifts during testing. Test-Time Training (TTT) methods have recently gained popularity by their ability to enhance the robustness of models through the addition of an auxiliary objective that is jointly optimized with the main task. Being strictly unsupervised, this auxiliary objective is used at test time to adapt the model without any access to labels. In this work, we propose Noise-Contrastive Test-Time Training (NC-TTT), a novel unsupervised TTT technique based on the discrimination of noisy feature maps. By learning to classify noisy views of projected feature maps, and then adapting the model accordingly on new domains, classification performance can be recovered by an important margin. Experiments on several popular test-time adaptation baselines demonstrate the advantages of our method compared to recent approaches for this task. The code can be found at:https://github.com/GustavoVargasHakim/NCTTT.git
Abstract:Deep Learning models have shown remarkable performance in a broad range of vision tasks. However, they are often vulnerable against domain shifts at test-time. Test-time training (TTT) methods have been developed in an attempt to mitigate these vulnerabilities, where a secondary task is solved at training time simultaneously with the main task, to be later used as an self-supervised proxy task at test-time. In this work, we propose a novel unsupervised TTT technique based on the maximization of Mutual Information between multi-scale feature maps and a discrete latent representation, which can be integrated to the standard training as an auxiliary clustering task. Experimental results demonstrate competitive classification performance on different popular test-time adaptation benchmarks.
Abstract:Standard deep learning models such as convolutional neural networks (CNNs) lack the ability of generalizing to domains which have not been seen during training. This problem is mainly due to the common but often wrong assumption of such models that the source and target data come from the same i.i.d. distribution. Recently, Vision Transformers (ViTs) have shown outstanding performance for a broad range of computer vision tasks. However, very few studies have investigated their ability to generalize to new domains. This paper presents a first Token-level Feature Stylization (TFS-ViT) approach for domain generalization, which improves the performance of ViTs to unseen data by synthesizing new domains. Our approach transforms token features by mixing the normalization statistics of images from different domains. We further improve this approach with a novel strategy for attention-aware stylization, which uses the attention maps of class (CLS) tokens to compute and mix normalization statistics of tokens corresponding to different image regions. The proposed method is flexible to the choice of backbone model and can be easily applied to any ViT-based architecture with a negligible increase in computational complexity. Comprehensive experiments show that our approach is able to achieve state-of-the-art performance on five challenging benchmarks for domain generalization, and demonstrate its ability to deal with different types of domain shifts. The implementation is available at: https://github.com/Mehrdad-Noori/TFS-ViT_Token-level_Feature_Stylization.
Abstract:A major problem of deep neural networks for image classification is their vulnerability to domain changes at test-time. Recent methods have proposed to address this problem with test-time training (TTT), where a two-branch model is trained to learn a main classification task and also a self-supervised task used to perform test-time adaptation. However, these techniques require defining a proxy task specific to the target application. To tackle this limitation, we propose TTTFlow: a Y-shaped architecture using an unsupervised head based on Normalizing Flows to learn the normal distribution of latent features and detect domain shifts in test examples. At inference, keeping the unsupervised head fixed, we adapt the model to domain-shifted examples by maximizing the log likelihood of the Normalizing Flow. Our results show that our method can significantly improve the accuracy with respect to previous works.