Abstract:This paper introduces the SemEval-2021 shared task 4: Reading Comprehension of Abstract Meaning (ReCAM). This shared task is designed to help evaluate the ability of machines in representing and understanding abstract concepts. Given a passage and the corresponding question, a participating system is expected to choose the correct answer from five candidates of abstract concepts in a cloze-style machine reading comprehension setup. Based on two typical definitions of abstractness, i.e., the imperceptibility and nonspecificity, our task provides three subtasks to evaluate the participating models. Specifically, Subtask 1 aims to evaluate how well a system can model concepts that cannot be directly perceived in the physical world. Subtask 2 focuses on models' ability in comprehending nonspecific concepts located high in a hypernym hierarchy given the context of a passage. Subtask 3 aims to provide some insights into models' generalizability over the two types of abstractness. During the SemEval-2021 official evaluation period, we received 23 submissions to Subtask 1 and 28 to Subtask 2. The participating teams additionally made 29 submissions to Subtask 3. The leaderboard and competition website can be found at https://competitions.codalab.org/competitions/26153. The data and baseline code are available at https://github.com/boyuanzheng010/SemEval2021-Reading-Comprehension-of-Abstract-Meaning.
Abstract:The challenges of building knowledge-grounded retrieval-based chatbots lie in how to ground a conversation on the background knowledge and how to perform their matching with the response. This paper proposes a method named Filtering before Iteratively REferring (FIRE) for presenting the background knowledge of dialogue agents in retrieval-based chatbots. We first propose a pre-filter, which is composed of a context filter and a knowledge filter. This pre-filter grounds the conversation on the knowledge and comprehends the knowledge according to the conversation by collecting the matching information between them bidirectionally, and then recognizing the important information in them accordingly. After that, iteratively referring is performed between the context and the response, as well as between the knowledge and the response, in order to collect the deep and wide matching information. Experimental results show that the FIRE model outperforms previous methods by margins larger than 2.8% on original personas and 4.1% on revised personas on the PERSONA-CHAT dataset, as well as 3.1% on the CMU_DoG dataset in terms of top-1 accuracy.
Abstract:Disentanglement is a problem in which multiple conversations occur in the same channel simultaneously, and the listener should decide which utterance is part of the conversation he will respond to. We propose a new model, named Dialogue BERT (DialBERT), which integrates local and global semantics in a single stream of messages to disentangle the conversations that mixed together. We employ BERT to capture the matching information in each utterance pair at the utterance-level, and use a BiLSTM to aggregate and incorporate the context-level information. With only a 3% increase in parameters, a 12% improvement has been attained in comparison to BERT, based on the F1-Score. The model achieves a state-of-the-art result on the a new dataset proposed by IBM and surpasses previous work by a substantial margin.
Abstract:In this paper, we study the problem of employing pre-trained language models for multi-turn response selection in retrieval-based chatbots. A new model, named Speaker-Aware BERT (SA-BERT), is proposed in order to make the model aware of the speaker change information, which is an important and intrinsic property of multi-turn dialogues. Furthermore, a speaker-aware disentanglement strategy is proposed to tackle the entangled dialogues. This strategy selects a small number of most important utterances as the filtered context according to the speakers' information in them. Finally, domain adaptation is performed in order to incorporate the in-domain knowledge into pre-trained language models. Experiments on five public datasets show that our proposed model outperforms the present models on all metrics by large margins and achieves new state-of-the-art performances for multi-turn response selection.
Abstract:Natural language inference (NLI) is among the most challenging tasks in natural language understanding. Recent work on unsupervised pretraining that leverages unsupervised signals such as language-model and sentence prediction objectives has shown to be very effective on a wide range of NLP problems. It would still be desirable to further understand how it helps NLI; e.g., if it learns artifacts in data annotation or instead learn true inference knowledge. In addition, external knowledge that does not exist in the limited amount of NLI training data may be added to NLI models in two typical ways, e.g., from human-created resources or an unsupervised pretraining paradigm. We runs several experiments here to investigate whether they help NLI in the same way, and if not,how?
Abstract:Winograd Schema Challenge (WSC) was proposed as an AI-hard problem in testing computers' intelligence on common sense representation and reasoning. This paper presents the new state-of-theart on WSC, achieving an accuracy of 71.1%. We demonstrate that the leading performance benefits from jointly modelling sentence structures, utilizing knowledge learned from cutting-edge pretraining models, and performing fine-tuning. We conduct detailed analyses, showing that fine-tuning is critical for achieving the performance, but it helps more on the simpler associative problems. Modelling sentence dependency structures, however, consistently helps on the harder non-associative subset of WSC. Analysis also shows that larger fine-tuning datasets yield better performances, suggesting the potential benefit of future work on annotating more Winograd schema sentences.
Abstract:We propose a nested recurrent neural network (nested RNN) model for English spelling error correction and generate pseudo data based on phonetic similarity to train it. The model fuses orthographic information and context as a whole and is trained in an end-to-end fashion. This avoids feature engineering and does not rely on a noisy channel model as in traditional methods. Experiments show that the proposed method is superior to existing systems in correcting spelling errors.
Abstract:Modeling natural language inference is a very challenging task. With the availability of large annotated data, it has recently become feasible to train complex models such as neural-network-based inference models, which have shown to achieve the state-of-the-art performance. Although there exist relatively large annotated data, can machines learn all knowledge needed to perform natural language inference (NLI) from these data? If not, how can neural-network-based NLI models benefit from external knowledge and how to build NLI models to leverage it? In this paper, we enrich the state-of-the-art neural natural language inference models with external knowledge. We demonstrate that the proposed models improve neural NLI models to achieve the state-of-the-art performance on the SNLI and MultiNLI datasets.
Abstract:The RepEval 2017 Shared Task aims to evaluate natural language understanding models for sentence representation, in which a sentence is represented as a fixed-length vector with neural networks and the quality of the representation is tested with a natural language inference task. This paper describes our system (alpha) that is ranked among the top in the Shared Task, on both the in-domain test set (obtaining a 74.9% accuracy) and on the cross-domain test set (also attaining a 74.9% accuracy), demonstrating that the model generalizes well to the cross-domain data. Our model is equipped with intra-sentence gated-attention composition which helps achieve a better performance. In addition to submitting our model to the Shared Task, we have also tested it on the Stanford Natural Language Inference (SNLI) dataset. We obtain an accuracy of 85.5%, which is the best reported result on SNLI when cross-sentence attention is not allowed, the same condition enforced in RepEval 2017.
Abstract:Cloze-style queries are representative problems in reading comprehension. Over the past few months, we have seen much progress that utilizing neural network approach to solve Cloze-style questions. In this paper, we present a novel model called attention-over-attention reader for the Cloze-style reading comprehension task. Our model aims to place another attention mechanism over the document-level attention, and induces "attended attention" for final predictions. Unlike the previous works, our neural network model requires less pre-defined hyper-parameters and uses an elegant architecture for modeling. Experimental results show that the proposed attention-over-attention model significantly outperforms various state-of-the-art systems by a large margin in public datasets, such as CNN and Children's Book Test datasets.