Max Planck Institute for Intelligent Systems
Abstract:Tailoring persuasive conversations to users leads to more effective persuasion. However, existing dialogue systems often struggle to adapt to dynamically evolving user states. This paper presents a novel method that leverages causal discovery and counterfactual reasoning for optimizing system persuasion capability and outcomes. We employ the Greedy Relaxation of the Sparsest Permutation (GRaSP) algorithm to identify causal relationships between user and system utterance strategies, treating user strategies as states and system strategies as actions. GRaSP identifies user strategies as causal factors influencing system responses, which inform Bidirectional Conditional Generative Adversarial Networks (BiCoGAN) in generating counterfactual utterances for the system. Subsequently, we use the Dueling Double Deep Q-Network (D3QN) model to utilize counterfactual data to determine the best policy for selecting system utterances. Our experiments with the PersuasionForGood dataset show measurable improvements in persuasion outcomes using our approach over baseline methods. The observed increase in cumulative rewards and Q-values highlights the effectiveness of causal discovery in enhancing counterfactual reasoning and optimizing reinforcement learning policies for online dialogue systems.
Abstract:Knowledge graphs serve as critical resources supporting intelligent systems, but they can be noisy due to imperfect automatic generation processes. Existing approaches to noise detection often rely on external facts, logical rule constraints, or structural embeddings. These methods are often challenged by imperfect entity alignment, flexible knowledge graph construction, and overfitting on structures. In this paper, we propose to exploit the consistency between entity and relation type information for noise detection, resulting a novel self-supervised knowledge graph denoising method that avoids those problems. We formalize type inconsistency noise as triples that deviate from the majority with respect to type-dependent reasoning along the topological structure. Specifically, we first extract a compact representation of a given knowledge graph via an encoder that models the type dependencies of triples. Then, the decoder reconstructs the original input knowledge graph based on the compact representation. It is worth noting that, our proposal has the potential to address the problems of knowledge graph compression and completion, although this is not our focus. For the specific task of noise detection, the discrepancy between the reconstruction results and the input knowledge graph provides an opportunity for denoising, which is facilitated by the type consistency embedded in our method. Experimental validation demonstrates the effectiveness of our approach in detecting potential noise in real-world data.
Abstract:Dynamic and static components in scenes often exhibit distinct properties, yet most 4D reconstruction methods treat them indiscriminately, leading to suboptimal performance in both cases. This work introduces SDD-4DGS, the first framework for static-dynamic decoupled 4D scene reconstruction based on Gaussian Splatting. Our approach is built upon a novel probabilistic dynamic perception coefficient that is naturally integrated into the Gaussian reconstruction pipeline, enabling adaptive separation of static and dynamic components. With carefully designed implementation strategies to realize this theoretical framework, our method effectively facilitates explicit learning of motion patterns for dynamic elements while maintaining geometric stability for static structures. Extensive experiments on five benchmark datasets demonstrate that SDD-4DGS consistently outperforms state-of-the-art methods in reconstruction fidelity, with enhanced detail restoration for static structures and precise modeling of dynamic motions. The code will be released.
Abstract:We address the common yet often-overlooked selection bias in interventional studies, where subjects are selectively enrolled into experiments. For instance, participants in a drug trial are usually patients of the relevant disease; A/B tests on mobile applications target existing users only, and gene perturbation studies typically focus on specific cell types, such as cancer cells. Ignoring this bias leads to incorrect causal discovery results. Even when recognized, the existing paradigm for interventional causal discovery still fails to address it. This is because subtle differences in when and where interventions happen can lead to significantly different statistical patterns. We capture this dynamic by introducing a graphical model that explicitly accounts for both the observed world (where interventions are applied) and the counterfactual world (where selection occurs while interventions have not been applied). We characterize the Markov property of the model, and propose a provably sound algorithm to identify causal relations as well as selection mechanisms up to the equivalence class, from data with soft interventions and unknown targets. Through synthetic and real-world experiments, we demonstrate that our algorithm effectively identifies true causal relations despite the presence of selection bias.
Abstract:This paper addresses a major challenge in acoustic event detection, in particular infant cry detection in the presence of other sounds and background noises: the lack of precise annotated data. We present two contributions for supervised and unsupervised infant cry detection. The first is an annotated dataset for cry segmentation, which enables supervised models to achieve state-of-the-art performance. Additionally, we propose a novel unsupervised method, Causal Representation Spare Transition Clustering (CRSTC), based on causal temporal representation, which helps address the issue of data scarcity more generally. By integrating the detected cry segments, we significantly improve the performance of downstream infant cry classification, highlighting the potential of this approach for infant care applications.
Abstract:This survey provides a comprehensive review on recent advancements of generative learning models in robotic manipulation, addressing key challenges in the field. Robotic manipulation faces critical bottlenecks, including significant challenges in insufficient data and inefficient data acquisition, long-horizon and complex task planning, and the multi-modality reasoning ability for robust policy learning performance across diverse environments. To tackle these challenges, this survey introduces several generative model paradigms, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), diffusion models, probabilistic flow models, and autoregressive models, highlighting their strengths and limitations. The applications of these models are categorized into three hierarchical layers: the Foundation Layer, focusing on data generation and reward generation; the Intermediate Layer, covering language, code, visual, and state generation; and the Policy Layer, emphasizing grasp generation and trajectory generation. Each layer is explored in detail, along with notable works that have advanced the state of the art. Finally, the survey outlines future research directions and challenges, emphasizing the need for improved efficiency in data utilization, better handling of long-horizon tasks, and enhanced generalization across diverse robotic scenarios. All the related resources, including research papers, open-source data, and projects, are collected for the community in https://github.com/GAI4Manipulation/AwesomeGAIManipulation
Abstract:Designing proper experiments and selecting optimal intervention targets is a longstanding problem in scientific or causal discovery. Identifying the underlying causal structure from observational data alone is inherently difficult. Obtaining interventional data, on the other hand, is crucial to causal discovery, yet it is usually expensive and time-consuming to gather sufficient interventional data to facilitate causal discovery. Previous approaches commonly utilize uncertainty or gradient signals to determine the intervention targets. However, numerical-based approaches may yield suboptimal results due to the inaccurate estimation of the guiding signals at the beginning when with limited interventional data. In this work, we investigate a different approach, whether we can leverage Large Language Models (LLMs) to assist with the intervention targeting in causal discovery by making use of the rich world knowledge about the experimental design in LLMs. Specifically, we present Large Language Model Guided Intervention Targeting (LeGIT) -- a robust framework that effectively incorporates LLMs to augment existing numerical approaches for the intervention targeting in causal discovery. Across 4 realistic benchmark scales, LeGIT demonstrates significant improvements and robustness over existing methods and even surpasses humans, which demonstrates the usefulness of LLMs in assisting with experimental design for scientific discovery.
Abstract:With the rapid growth of multi-modal data from social media, short video platforms, and e-commerce, content-based retrieval has become essential for efficiently searching and utilizing heterogeneous information. Over time, retrieval techniques have evolved from Unimodal Retrieval (UR) to Cross-modal Retrieval (CR) and, more recently, to Composed Multi-modal Retrieval (CMR). CMR enables users to retrieve images or videos by integrating a reference visual input with textual modifications, enhancing search flexibility and precision. This paper provides a comprehensive review of CMR, covering its fundamental challenges, technical advancements, and categorization into supervised, zero-shot, and semi-supervised learning paradigms. We discuss key research directions, including data augmentation, model architecture, and loss optimization in supervised CMR, as well as transformation frameworks and external knowledge integration in zero-shot CMR. Additionally, we highlight the application potential of CMR in composed image retrieval, video retrieval, and person retrieval, which have significant implications for e-commerce, online search, and public security. Given its ability to refine and personalize search experiences, CMR is poised to become a pivotal technology in next-generation retrieval systems. A curated list of related works and resources is available at: https://github.com/kkzhang95/Awesome-Composed-Multi-modal-Retrieval
Abstract:Gradient-based methods are well-suited for derivative-free optimization (DFO), where finite-difference (FD) estimates are commonly used as gradient surrogates. Traditional stochastic approximation methods, such as Kiefer-Wolfowitz (KW) and simultaneous perturbation stochastic approximation (SPSA), typically utilize only two samples per iteration, resulting in imprecise gradient estimates and necessitating diminishing step sizes for convergence. In this paper, we first explore an efficient FD estimate, referred to as correlation-induced FD estimate, which is a batch-based estimate. Then, we propose an adaptive sampling strategy that dynamically determines the batch size at each iteration. By combining these two components, we develop an algorithm designed to enhance DFO in terms of both gradient estimation efficiency and sample efficiency. Furthermore, we establish the consistency of our proposed algorithm and demonstrate that, despite using a batch of samples per iteration, it achieves the same convergence rate as the KW and SPSA methods. Additionally, we propose a novel stochastic line search technique to adaptively tune the step size in practice. Finally, comprehensive numerical experiments confirm the superior empirical performance of the proposed algorithm.
Abstract:Rumours in online social media pose significant risks to modern society, motivating the need for better understanding of how they develop. We focus specifically on the interface between emotion and rumours in threaded discourses, building on the surprisingly sparse literature on the topic which has largely focused on emotions within the original rumour posts themselves, and largely overlooked the comparative differences between rumours and non-rumours. In this work, we provide a comprehensive analytical emotion framework, contrasting rumour and non-rumour cases using existing NLP datasets to further understand the emotion dynamics within rumours. Our framework reveals several findings: rumours exhibit more negative sentiment and emotions, including anger, fear and pessimism, while non-rumours evoke more positive emotions; emotions are contagious in online interactions, with rumours facilitate negative emotions and non-rumours foster positive emotions; and based on causal analysis, surprise acts as a bridge between rumours and other emotions, pessimism is driven by sadness and fear, optimism by joy and love.