Abstract:Exploration of unknown environments is crucial for autonomous robots; it allows them to actively reason and decide on what new data to acquire for tasks such as mapping, object discovery, and environmental assessment. Existing methods, such as frontier-based methods, rely heavily on 3D map operations, which are limited by map quality and often overlook valuable context from visual cues. This work aims at leveraging 2D visual cues for efficient autonomous exploration, addressing the limitations of extracting goal poses from a 3D map. We propose a image-only frontier-based exploration system, with FrontierNet as a core component developed in this work. FrontierNet is a learning-based model that (i) detects frontiers, and (ii) predicts their information gain, from posed RGB images enhanced by monocular depth priors. Our approach provides an alternative to existing 3D-dependent exploration systems, achieving a 16% improvement in early-stage exploration efficiency, as validated through extensive simulations and real-world experiments.
Abstract:Identifying the causal relations between interested variables plays a pivotal role in representation learning as it provides deep insights into the dataset. Identifiability, as the central theme of this approach, normally hinges on leveraging data from multiple distributions (intervention, distribution shift, time series, etc.). Despite the exciting development in this field, a practical but often overlooked problem is: what if those distribution shifts happen sequentially? In contrast, any intelligence possesses the capacity to abstract and refine learned knowledge sequentially -- lifelong learning. In this paper, with a particular focus on the nonlinear independent component analysis (ICA) framework, we move one step forward toward the question of enabling models to learn meaningful (identifiable) representations in a sequential manner, termed continual causal representation learning. We theoretically demonstrate that model identifiability progresses from a subspace level to a component-wise level as the number of distributions increases. Empirically, we show that our method achieves performance comparable to nonlinear ICA methods trained jointly on multiple offline distributions and, surprisingly, the incoming new distribution does not necessarily benefit the identification of all latent variables.
Abstract:Accurate localization in diverse environments is a fundamental challenge in computer vision and robotics. The task involves determining a sensor's precise position and orientation, typically a camera, within a given space. Traditional localization methods often rely on passive sensing, which may struggle in scenarios with limited features or dynamic environments. In response, this paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy. Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications. Our results demonstrate that our method performs better than the existing one, targeting similar problems and generalizing on synthetic and real data. We also release an open-source implementation to benefit the community.
Abstract:Neural Radiance Fields (NeRFs) have shown remarkable success in synthesizing photorealistic views from multi-view images of static scenes, but face challenges in dynamic, real-world environments with distractors like moving objects, shadows, and lighting changes. Existing methods manage controlled environments and low occlusion ratios but fall short in render quality, especially under high occlusion scenarios. In this paper, we introduce NeRF On-the-go, a simple yet effective approach that enables the robust synthesis of novel views in complex, in-the-wild scenes from only casually captured image sequences. Delving into uncertainty, our method not only efficiently eliminates distractors, even when they are predominant in captures, but also achieves a notably faster convergence speed. Through comprehensive experiments on various scenes, our method demonstrates a significant improvement over state-of-the-art techniques. This advancement opens new avenues for NeRF in diverse and dynamic real-world applications.
Abstract:Testing conditional independence has many applications, such as in Bayesian network learning and causal discovery. Different test methods have been proposed. However, existing methods generally can not work when only discretized observations are available. Specifically, consider $X_1$, $\tilde{X}_2$ and $X_3$ are observed variables, where $\tilde{X}_2$ is a discretization of latent variables $X_2$. Applying existing test methods to the observations of $X_1$, $\tilde{X}_2$ and $X_3$ can lead to a false conclusion about the underlying conditional independence of variables $X_1$, $X_2$ and $X_3$. Motivated by this, we propose a conditional independence test specifically designed to accommodate the presence of such discretization. To achieve this, we design the bridge equations to recover the parameter reflecting the statistical information of the underlying latent continuous variables. An appropriate test statistic and its asymptotic distribution under the null hypothesis of conditional independence have also been derived. Both theoretical results and empirical validation have been provided, demonstrating the effectiveness of our test methods.
Abstract:Multi-source domain adaptation (MSDA) methods aim to transfer knowledge from multiple labeled source domains to an unlabeled target domain. Although current methods achieve target joint distribution identifiability by enforcing minimal changes across domains, they often necessitate stringent conditions, such as an adequate number of domains, monotonic transformation of latent variables, and invariant label distributions. These requirements are challenging to satisfy in real-world applications. To mitigate the need for these strict assumptions, we propose a subspace identification theory that guarantees the disentanglement of domain-invariant and domain-specific variables under less restrictive constraints regarding domain numbers and transformation properties, thereby facilitating domain adaptation by minimizing the impact of domain shifts on invariant variables. Based on this theory, we develop a Subspace Identification Guarantee (SIG) model that leverages variational inference. Furthermore, the SIG model incorporates class-aware conditional alignment to accommodate target shifts where label distributions change with the domains. Experimental results demonstrate that our SIG model outperforms existing MSDA techniques on various benchmark datasets, highlighting its effectiveness in real-world applications.
Abstract:Rather than having each newly deployed robot create its own map of its surroundings, the growing availability of SLAM-enabled devices provides the option of simply localizing in a map of another robot or device. In cases such as multi-robot or human-robot collaboration, localizing all agents in the same map is even necessary. However, localizing e.g. a ground robot in the map of a drone or head-mounted MR headset presents unique challenges due to viewpoint changes. This work investigates how active visual localization can be used to overcome such challenges of viewpoint changes. Specifically, we focus on the problem of selecting the optimal viewpoint at a given location. We compare existing approaches in the literature with additional proposed baselines and propose a novel data-driven approach. The result demonstrates the superior performance of the data-driven approach when compared to existing methods, both in controlled simulation experiments and real-world deployment.
Abstract:This paper presents a mixed-reality human-robot teaming system. It allows human operators to see in real-time where robots are located, even if they are not in line of sight. The operator can also visualize the map that the robots create of their environment and can easily send robots to new goal positions. The system mainly consists of a mapping and a control module. The mapping module is a real-time multi-agent visual SLAM system that co-localizes all robots and mixed-reality devices to a common reference frame. Visualizations in the mixed-reality device then allow operators to see a virtual life-sized representation of the cumulative 3D map overlaid onto the real environment. As such, the operator can effectively "see through" walls into other rooms. To control robots and send them to new locations, we propose a drag-and-drop interface. An operator can grab any robot hologram in a 3D mini map and drag it to a new desired goal pose. We validate the proposed system through a user study and real-world deployments. We make the mixed-reality application publicly available at https://github.com/cvg/HoloLens_ros.
Abstract:Autonomous robots deal with unexpected scenarios in real environments. Given input images, various visual perception tasks can be performed, e.g., semantic segmentation, depth estimation and normal estimation. These different tasks provide rich information for the whole robotic perception system. All tasks have their own characteristics while sharing some latent correlations. However, some of the task predictions may suffer from the unreliability dealing with complex scenes and anomalies. We propose an attention-based failure detection approach by exploiting the correlations among multiple tasks. The proposed framework infers task failures by evaluating the individual prediction, across multiple visual perception tasks for different regions in an image. The formulation of the evaluations is based on an attention network supervised by multi-task uncertainty estimation and their corresponding prediction errors. Our proposed framework generates more accurate estimations of the prediction error for the different task's predictions.