Abstract:Autonomous racing in robotics combines high-speed dynamics with the necessity for reliability and real-time decision-making. While such racing pushes software and hardware to their limits, many existing full-system solutions necessitate complex, custom hardware and software, and usually focus on Time-Trials rather than full unrestricted Head-to-Head racing, due to financial and safety constraints. This limits their reproducibility, making advancements and replication feasible mostly for well-resourced laboratories with comprehensive expertise in mechanical, electrical, and robotics fields. Researchers interested in the autonomy domain but with only partial experience in one of these fields, need to spend significant time with familiarization and integration. The ForzaETH Race Stack addresses this gap by providing an autonomous racing software platform designed for F1TENTH, a 1:10 scaled Head-to-Head autonomous racing competition, which simplifies replication by using commercial off-the-shelf hardware. This approach enhances the competitive aspect of autonomous racing and provides an accessible platform for research and development in the field. The ForzaETH Race Stack is designed with modularity and operational ease of use in mind, allowing customization and adaptability to various environmental conditions, such as track friction and layout. Capable of handling both Time-Trials and Head-to-Head racing, the stack has demonstrated its effectiveness, robustness, and adaptability in the field by winning the official F1TENTH international competition multiple times.
Abstract:This work introduces SynPF, an MCL-based algorithm tailored for high-speed racing environments. Benchmarked against Cartographer, a state-of-the-art pose-graph SLAM algorithm, SynPF leverages synergies from previous particle-filtering methods and synthesizes them for the high-performance racing domain. Our extensive in-field evaluations reveal that while Cartographer excels under nominal conditions, it struggles when subjected to wheel-slip, a common phenomenon in a racing scenario due to varying grip levels and aggressive driving behaviour. Conversely, SynPF demonstrates robustness in these challenging conditions and a low-latency computation time of 1.25 ms on on-board computers without a GPU. Using the F1TENTH platform, a 1:10 scaled autonomous racing vehicle, this work not only highlights the vulnerabilities of existing algorithms in high-speed scenarios, tested up until 7.6 m/s, but also emphasizes the potential of SynPF as a viable alternative, especially in deteriorating odometry conditions.